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Abstract

Graph-structured data is on the rise, in size, complexity and dynamism, and underlies many

traditional and modern applications in diverse fields of science, engineering and business. While

analysis of static graphs is a well-explored field, new emphasis is being placed on understanding

and representing the ways in which networks evolve over time through the insertion, deletion and

modification of vertices, edges, and associated attributes. Such evolving graphs that have been

persisted for offline analysis are called temporal graphs while those that continue to change are

called dynamic graphs. For example, one may wish to study the evolution of well-studied static

graph properties such as centrality measures, density, conductance, etc., over time. Another

need is to search and discover temporal patterns, where the events that constitute the pattern

are spread out over time. Despite increasing interest and availability, there is limited work

on distributed programming abstractions to design algorithms over temporal graphs and on

scalable platforms to execute them. Moreover, existing abstractions and platforms developed

for static graphs are either inapplicable, need non-trivial algorithm-specific generalization or are

inefficient due to redundant computation and communication. We address both these gaps in

this thesis. We propose high-level distributed programming primitives for algorithm designers

to concisely express a wide range of common and novel analytics over temporal graphs, while

abstracting away the fine-grained orchestration and distribution of computation across a cluster

of servers to achieve weak scaling. These primitives and distribute platform are one of the first

of their kind contributions to temporal graph processing.

Specifically, we focus on ad hoc batch processing of fully evolved time-varying graphs, also

known as temporal graphs. We propose an Interval-centric Computing Model (ICM) for dis-

tributed iterative processing over the entire history of the graph. Users define their computing

and communication logic from the perspective of a vertex and its time-interval, and this also

forms the unit of data-parallel computation. The cornerstone of our model is a unique trans-

formation operator called Time-warp, which enables automatic sharing of computation and

communication across adjacent time-points of a vertex. Graphite is our open-source distributed

implementation of ICM by extending Apache Giraph that enables composability of multi-stage
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Abstract

algorithms and includes optimizations to enhance compute and communication performance.

We use it to design 12 common temporal graph algorithms from literature. We have rigorously

evaluated its performance for 6 diverse real-world temporal graphs – as large as 131M vertices

and 5.5B edges, and as long as 219 snapshots. Our comparison with 4 baseline platforms on a

10-node commodity cluster shows that ICM shares compute and messaging across intervals to

out-perform them by up to 25×, and matches them even in worst-case scenarios.

We also make a preliminary contribution on primitives for incremental processing of dynamic

graphs, where a stream of graph updates are applied to an existing temporal graph. Here, the

intuition is to recompute the algorithm only on those parts of the graph that have changed and

not on the entire graph. We offer initial results on this approach, and leave the generalization

of this model to a broader class of streaming graph algorithms to future work.
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Chapter 1

Introduction

Graph-structured data is on the rise, in size, complexity and dynamism, and underlies many

traditional and modern applications in diverse disciplines, spanning from social, transport and

communication networks, to molecular biology, neuro-science and epidemiology. Typically, such

data is represented as a static graph that describes the concepts (vertices) and the relationship

between them (edges), with optional attributes associated with vertices and edges. While anal-

ysis of static graphs is a well-explored field [43], new emphasis is being placed on understanding

and representing the ways in which networks evolve over time through the insertion, deletion

and modification of vertices, edges, and associated attributes [45, 116]. For example, one may

wish to study the evolution of well-studied static graph properties such as centrality measures,

density, conductance, etc., over time [66]. Another need is to search and discover temporal

patterns, where the events that constitute the pattern are spread out over time [55]. Such

time-evolving graphs that have been persisted for offline analysis are called temporal graphs

while those that continue to change via stream of updates are called dynamic graphs.

1.1 Abstractions and Platforms for Temporal Graphs

Temporal graphs are an emerging class of fully-evolved property graphs [8] with applications in

both traditional domains like transit [25], financial transaction and social networks [115], and

emerging ones like Internet of Things, knowledge graphs and human connectomes [110]. The

structure and attributes of such graphs may change over time [45, 116]. These are represented

concisely as interval graphs where each entity in the graph (vertex, edge, their attributes)

has a start and an end time-point indicating their interval of existence. Fig. 1.1(a) shows an

interval graph for a transit network, where vertices are transit-stops, directed edges indicate a

transit option (e.g., bus, train) between them, an interval on the edge identifies the time-period
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Figure 1.1: Transit network as a temporal graph.

between which the transit option can be initiated, and an edge attribute identifies the travel

cost for that transit. In the example, the lifespan of these vertices are perpetual, [0,∞), for

simplicity. Interval graphs can be multi-graphs.

Despite their growing availability, there is limited work on temporal graph primitives, plat-

forms and algorithms. Broadly, temporal graphs algorithms can be time-independent (TI) or

time-dependent (TD) [107]. TI algorithms, also called snapshot-reducible [101], can discretize a

temporal graph into snapshots, one per time-point [40], and operate on each snapshot indepen-

dently. E.g., Fig. 1.1(c) shows the transit network decomposed into 8 snapshots, S1–S8, each

indicating the vertices, edges and attributes active at that time-point. Algorithms like PageR-

ank (PR), Breadth First Search (BFS) and Connected Components can be modeled as TI to

run on each Si. Existing vertex-centric computing models (VCM) for non-temporal graphs like

Google’s Pregel [74], or multi-snapshot approaches like SAMS [107] can be used to design and

execute such algorithms on temporal graphs. The latter avoids redundant computation across

different snapshots to improve performance.

TD algorithms, also called extended snapshot-reducible [101], actively use temporal knowl-

edge to navigate and process the entire graph, or large intervals within them. The need for
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time-respecting paths on a road network is intuitive; it ensures that time-varying factors like

traffic density and road-closures are incorporated [120]. TD clustering coefficient helps estimate

the rate of spread of a disease over time [104], while TD centrality measures are used to esti-

mate information propagation delays in social networks [45]. Temporal motifs like feed-forward

triangles in transaction networks let us identify monetary routing patterns [61]. Notice that in

these applications it is essential that the temporal order is respected.

Multi-snapshot approaches applied to TD algorithms can give incorrect results [78, 107, 120].

TD algorithms for earliest/latest arrival time and reachability have been proposed [120]. Other

bespoke algorithms [33, 46] and patterns can be extended to similar ones. E.g., the transformed

graph approach [120] converts an interval graph into an algorithm-specific non-temporal graph.

Intervals on vertices and edges map to vertex and edge replicas for time-points in the interval.

TD algorithms work on the much larger transformed graph with implicitly-encoded intervals,

allowing traversal over time and space. Fig. 1.1(b) shows a transformed graph for the transit

network.

A key gap is the lack of a unifying abstraction that scales for constructing both TI and

TD algorithms on temporal graphs, which will ease algorithm design and perform well for

diverse, large and long graphs. Platforms and primitives like SAMS [107], Chronos [40] and

GraphInc [17] reuse computing or messaging across snapshots, and some operate in a distributed

mode for scalability [17]. But they are limited to TI algorithms. Distributed abstractions for

TI and TD algorithms [70, 99] do not scale well due to redundant computing or messaging

across time-points and are, arguably, less intuitive. Ad hoc patterns like transformed graph are

neither intuitive nor scale.

We address this gap through an interval-centric model of computing (ICM) for designing

TI and TD algorithms over temporal graphs. ICM uses an interval-vertex as the data-parallel

unit of computing, and executes in a distributed and iterative manner, like popular component-

centric abstractions [76, 74]. ICM relies on our novel time-warp operator, which automatically

partitions a vertex’s temporal state, and temporally aligns and groups messages to these states.

Warp offers two essential properties. One, it implicitly enforces temporal bounds between the

time-intervals of vertices, edges and messages for simple and consistent processing by the user

logic. Two, its maximal partition-size property guarantees that the number of user logic calls

and messages generated are minimized. Such automatic sharing of compute and messaging

within an interval gives ICM its performance and scaling.
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1.1.1 TD Algorithm Example using Temporal SSSP

Say we wish to find a time-respecting path with the shortest travel cost [120] in the transit

network in Fig. 1.1(a), from vertex A starting from time 0 to every other vertex. For simplicity,

the travel time over any edge is assumed to be 1. Multiple solutions can exist for the same

source and destination vertices, but which arrive at different points in time and have minimal

cost for that point.

This degenerates to running the single source shortest path (SSSP) algorithm using VCM

on the transformed graph in Fig. 1.1(b). E.g., to reach from A to E, we depart A at time 5

(denoted by A5), arrive at B at time 5+1 = 6 while incurring a cost (edge attribute) of 3 units,

and depart B at time 8 to reach E at time 8 + 1 = 9, for a total travel cost of 3 + 2 = 5 units.

Another solution is from A1 → C2 → C5 → E6 that costs 3 + 4 = 7 units, but is valid for the

earlier arrival time of 6 at E. Finding the shortest paths from the source to all destination

vertices at all valid arrival times takes 21 vertex visits and 27 edge traversals – the compute

and messaging cost.

Our ICM design for temporal SSSP, operates on the interval graph in Fig 1.1(a), navigates

across both vertices and edges, by traversing valid overlapping time-intervals, with just 7 “in-

terval vertex” visits and 6 edge traversals. While we discuss the design for SSSP in Sec. 4,

intuitively, we replicate the vertex into the minimal necessary sub-intervals, on-demand, based

on the different intervals present in the messages that arrive and the out-edges. This makes

designing temporal SSSP (among many other algorithms) similar to its non-temporal VCM

variant, while avoiding all redundant compute and messaging.

We cannot solve this algorithm on a multi-snapshot graph as the partial paths over time is

lost across snapshots. E.g., the shortest path solution A→ B → E does not exist in any single

snapshot of Fig. 1.1(c).

1.2 Contributions

We make the following contributions in this thesis:

1. We define the temporal graph data model in Chapter 3. We introduce and illustrate the

novel ICM programming abstraction and time-warp operator to design distributed TI and

TD algorithms on temporal graphs, in Chapter 4.

2. We discuss the use of ICM to intuitively design 12 TI and TD algorithms from literature

in Chapter 5.

3. We describe the architecture of Graphite distributed platform, which implements ICM,
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along with its features and optimizations, in Chapter 6.

4. In Chapter 7, we offer detailed experiments to evaluate the performance and scalability

of ICM for these 12 algorithms on 6 diverse real-world graphs, as large as 131M vertices

and 5.5B edges, and as long as 219 snapshots. We compare ICM to 4 baselines which we

implement from literature.

5. In Chapter 8, we present our preliminary results on WAVE, an approach to extending

ICM to support incremental graph computation.

1.3 Organization of the thesis

Rest of the thesis is organized as described below. Chapter 2 presents background and review

of related work. Chapter 3 defines the temporal graph data model. Chapter 4 describes

our interval-centric computing model (ICM) for designing TI and TD algorithms. Chapter 6

presents Graphite, which is our implementation of ICM over Apache Giraph. Chapter 7

evaluates the performance of Graphite for diverse real-world temporal graphs. Chapter 8

presents our preliminary results on WAVE, a substrate for incremental graph computation.

Chapter 9 presents conclusions.future work.
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Chapter 2

Background and Related Work

In this chapter, we offer a background on component-centric computing models that form the

basis for our proposed Interval-centric Computing Model (ICM) temporal graph abstraction.

We also discuss related works on temporal and dynamic graph processing primitives and plat-

forms, identify their gaps, and contrast how ICM, our Graphite platform for ICM, and our

preliminary work on WAVE for dynamic graph processing address these.

2.1 Background

Pregel [74] is a Vertex-centric Computational Model (VCM) designed for large scale distributed

graph processing, inspired by Valiant’s Bulk Synchronous Parallel [109] programming model.

Pregel has proved popular for designing distributed and scalable graph algorithms on large

graphs that execute on distributed machines in a commodity cluster. There have also been

subtantial research into extending Pregel’s programming abstractions [100, 122, 38] and the

platform capabilities of its open source implementation, Apache Giraph [90, 57].

The input to a Pregel program is a directed graph whose vertices, along with their respective

out-edges, are partitioned across machines of a computing cluster. Graphs with undirected

edges are expressed as a pair of directed edges. Pregel algorithms are executed as a sequence

of iterations (supersteps).

Pregel requires programmers to “think like a vertex” by following a vertex-centric computing

model (VCM). Here, users provide the logic to be executed at each vertex independently. During

a superstep, this vertex-centric logic is invoked for each vertex, in a data-parallel manner. In

each superstep, the logic can receive messages sent to it from the previous superstep, send

messages to other vertices to be delivered in the next superstep, and modify the state of the

vertex and its outgoing edges, typically by processing its received messages and the prior states.
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Figure 2.1: Bulk synchronous processing (BSP) computation model of Pregel, illustrated with
three supersteps and three workers [57]

A synchronization barrier is present between supersteps is used to ensure that all messages are

delivered at the beginning of the following superstep. This is illustrated in Figure 2.1.

The supersteps proceed will until there is a global consensus to stop the execution. A vertex

starts in the active state. It may vote to halt at any superstep and it will get deactivated; it

will be reactivated only if it receives a message in a future superstep. The program terminates

when all vertices are inactive and there are no messages in transit.

Apache Giraph [1] is a popular open-source implementation of Pregel that uses a Map-only

Hadoop job for computation. A number of distributed graph algorithms for static graphs have

been expressed using VCM due to its intuitive abstraction, including PageRank [74], Connected

Components [91], Coloring [91], Clustering [74], Bipartite Matching [74] and Traversal-Based

algorithms [123]. Our Interval-centric Model of Computing (ICM) described later (Refer Chap-

ter 4) is inspired by the component-centric, iterative execution model of Pregel.

2.2 Related Work

2.2.1 Static Graph Processing

2.2.1.1 Programming Abstractions and Primitives

Graph applications tend to be irregular and computationally complex [105]. Graph processing

primitives offer a structure to more-easily design and execute graph algorithms. Graph program-

ming abstractions such as Vertex-Centric Programming [74], Gather-Apply-Scatter (GAS) [72],

Edge-Centric Programming [88], and Subgraph-Centric Programming [100, 84] adopt a data-

parallel and iterative execution model were users design graph analytic from the perspective of a
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component which could vary from a vertex (or edge) to a partition. Parallelism is exposed at the

granularity of graph components, and hence these are also called component-centric computing

models [76], with VCM the most common [91, 123].

2.2.1.2 Distributed Platforms

Distributed graph programming platforms such as Pregel [74], GraphX [35], GraphLab [72],

X-Stream [88], GoFFish [100], and NScale [84] are designed to horizontally scale high-level

graph programming primitives on multiple CPU cores and cumulative memory across machines.

These platforms hide the complexity of orchestration, communication, and synchronization

from the end users. Giraph is a VCM platform which leverages the task scheduling component

(namely YARN) of Hadoop clusters for orchestration. It runs workers as special mappers, which

communicate with each other to deliver messages between vertices and makes use of global

barriers to synchronize between supersteps. In-addition to graph-specific systems, general-

purpose iterative data processing systems such as Hadoop [98], Spark [125] and Flink [18] have

been leveraged to program graph analytics.

However, existing abstractions and systems focus on large static graphs. ICM is in the

spirit of such intuitive component-centric models, but introduces time-intervals and time-warp

as first-class entities to ease programmability for temporal graphs and enhance their scalability.

2.2.2 Temporal Graph Processing

2.2.3 Time Independent Temporal Graph Algorithms

Time Independent (TI) processing of temporal graphs models them as a series of snapshots [41].

This allows existing primitives, platforms and algorithms for static graph processing [91, 123] to

be applied independently to each snapshot at a distinct time-point. Efficient storage of multiple

snapshots on-disk and in-memory, and their hierarchical indexing for fast snapshot retrievals

have also been proposed [58, 73, 59, 77, 20]. However, processing snapshots independently causes

redundant computation and messaging, limiting scalability. Systems and abstractions [40, 17,

65, 15, 87] have tried to address this inefficiency.

In particular, SAMS [107] presents a suite of rewriting rules which enable automatic co-

scheduling of common steps during multi-snapshot analysis, in a style similar to SIMD process-

ing. This addresses some of the performance limitations we ourselves observe in our experiments

when operating over a large number of snapshots. However, SAMS does not offer mechanisms

for distributed execution, which limits scalability. More importantly, the multi-snapshot ap-

proach implicitly limits us to the class of snapshot-reducible algorithms, which leaves out many

interesting applications.
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Chronos [40] offers an efficient in-memory layout for vertices that span multiple snapshots

to leverage time-locality. It couples this with a vertex-centric engine that does batched exe-

cution over multiple snapshots, with concurrent processing of the vertex states from multiple

snapshots. These enhance cache hits. Unlike us, the user logic execution for a vertex is not

shared across snapshots. But they do reduce (in-memory) communication costs when pushing

common messages that span contiguous snapshots.

However, these platforms are designed for independent snapshot analytics. States from prior

snapshots are used to reduce the recompute time for a later snapshot rather than support time-

dependent algorithms. ICM supports both TI and TD algorithms, but focus on fully evolved

graphs with valid time [62] rather than streaming ones.

2.2.4 Time Dependent Temporal Graph Algorithms

Time Dependent (TD) algorithms actively use the state of the graph at a previous time-point

to execute the current one. Given the limited platforms and abstractions for designing such

algorithms, custom techniques for individual analytics have been proposed [33, 46, 120, 119, 117,

82, 64, 127, 71, 68, 96, 23]. These are not generalizable primitives, though TD algorithms that

are similar to each other can reuse a pattern. Of these bespoke design-patterns, the transformed

graph approach [119] can be adapted for a large class of TD algorithms, albeit with algorithm-

specific transformations. It can also be extended for distributed execution using VCM. But, as

we demonstrate (Chapter 7), it bloats the graph size and suffers from poor scalability.

Like us, Tink [70] supports distributed processing of interval graphs, and offers a library of

TD algorithms over Apache Flink. Like Chronos, it avoids sending redundant messages that

span an interval but does not share computation across an interval due to time-point based

primitives. As we illustrate, this limits scalability. ICM’s warp operator maximizes sharing of

calls to compute and messages across intervals.

GoFFish-TS [99] proposes primitives for designing TD algorithms using a multi-snapshot

approach. Here, the state from a prior snapshot can be explicitly passed to the next snapshot

by the user logic. Within a snapshot, it uses a subgraph-centric model of execution. It too

does not avoid sharing computation, is limited to proceeding one snapshot at a time, and states

have to be explicitly passed by the user logic over time.

None of the reviewed literature provide results for temporal graphs as large and diverse as

we report here, nor examine the wide variety of TI and TD algorithms that we consider.
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2.2.5 Dynamic Graph Processing

Unlike static graph processing systems, streaming systems like Kineograph [21], Tornado [97],

ReMo [92], GraphBolt [24] and Kickstarter [114] operate on dynamic graphs. Contrarily to static

graph processing systems, these systems execute graph computation concurrently with graph

updates. Some of these frameworks even allow computation results to be updated incrementally,

rather than recomputed from scratch when data is updated.

Kineograph [21] supports incremental processing of real-time graph updates. It constructs

consistent snapshots of an evolving graph for streaming computation. It reuses the state of the

prior snapshot to rapidly compute an analytic for the new snapshot. However lacks support

for deletes, which is non-trivial to achieve in incremental graph algorithms. GraphInc [17]

is complementary to Kineograph in that it supports real-time updates, but also memoizes

incoming messages to avoid redundant vertex-compute if the same message was seen earlier.

Both these platforms must complete updates to current snapshot before moving to the next

Tegra [50] relaxes this by allows streaming updates to be folded into an ongoing analytic using

a pause-shift-resume model. This reduces the time to apply and process recent updates. It is

designed over Apache Spark [125].

Tornado [97] processes streams of graph updates by forking execution to process user-

program while the graph structure updates in the main branch, but only supports a subset of

algorithms. Kickstarter [114] uses a global dependence tree to maintain state dependencies over

RDMA. GraphBolt [24] uses approximate techniques to trade-off accuracy for performance.

However, these systems only allow maintaining computation results on the latest snapshot

and do not support any notion of time. On the other hand, Wave supports incremental main-

tenance of computational results across time.

2.2.6 Models and Algebra

The need to manage and process temporal data, in the context of graphs or otherwise, has been

well-studied in the database research community [32, 93]. Snodgrass’s seminal work on defining

the temporal data model dates back to the early 1990s [102]. Further, temporal join, coalescing,

alignment and aggregation have been studied in the context of relational algebra [11, 28, 32, 131].

Our time-warp operator, which deals with the problem of partitioning overlapping time intervals

into disjoint interval groups, is similar to the recently proposed disjoint interval partitioning

(DIP) [16] for temporal joins and other sort-based operations (e.g., temporal aggregation).

Despite the similarity, time-warp is specifically targeted at the unique requirements of temporal

graph processing, and allows us to avoid runtime overheads in temporal graph processing.
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Temporal data model and querying primitives from relational databases [62] are only grad-

ually translating to modeling temporal features in graphs, and on graph querying languages [9].

Moffit and Stoyanovich [78] propose a Temporal Graph Algebra (TGA), which introduces prin-

cipled temporal generalizations based on temporal relational algebra for conventional graph

operators. Others use indexing for temporal reachability queries in strongly connected com-

ponents at various time points [95], and indexing for temporal shortest path queries [94, 15].

ICM is imperative and can be used to design general purpose temporal graphs analytics, and

is complementary to these.

2.2.7 Graph Storage and Maintenance Systems

Update-optimized graph storage systems like DeltaGraph [58, 59] focus on efficiently storing

updates and provide access to state of the graph at multiple points in time using differential

versioning and delta-encoding. Clustering temporally adjacent snapshots and computing a

representative snapshot was also proposed [87]. Others systems like ImmortalGraph [77] ensure

efficient storage and retrieval by exploring on-disk temporal and structural locality. LLAMA [73]

applies incoming updates in batches and creates copy-on-write snapshots for graph analysis.

Both, LLAMA and GraphOne [63] can handle queries running on the most recent version of

the graph while updates are applied concurrently. However, these systems lack support for TD

algorithms as the partial paths over time are lost across snapshots. Graphite is well-suited

to process graph data stored in such storage systems and we state that efficient storage of

temporal graph is beyond the scope of this thesis.
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Chapter 3

Temporal Graph Model

Our Interval-centric Computing Model (ICM) is a distributed primitive for composing analytics

over temporal graphs. These are historic graphs with dynamism in their structure and attributes,

but which are fully evolved and ready for processing. In this chapter, we define the temporal

graph data model that our proposed ICM abstraction supports. Such formalism is given to

avoid ambiguity in this fast changing domain.

3.1 Preliminaries

3.1.1 Time Domain.

Without loss of generality, we assume a linearly ordered discrete time domain Ω whose range

is the set of non-negative whole numbers. Each instant in time is a time-point, and their linear

ordering means that ti < ti+1 =⇒ ti happened before ti+1. One time unit is the atomic

increment of time, and corresponds to some user-defined wall-clock time, such as p seconds.

3.1.2 Time-interval.

Entities of a temporal graph have an associated time-interval. Given tstart, tend ∈ Ω, then

τ = [tstart, tend) indicates a time-interval that starts from and includes tstart, and extends to but

excludes tend, i.e., a half-open notation [7, 62]. The time-points that are part of a time-interval

τ = [tstart, tend) is the set {t | t ∈ Ω and tstart ≤ t < tend}.

3.1.3 Interval Relations

Boolean relations between intervals follow Allen’s conventions [7]. The symbol < represents

during, v represents during or equals, u represents intersects, = represents equals, and a is the

meets relation. ∩ returns the intersecting interval between two intervals.
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3.2 Temporal Graph

Definition 1 (Temporal Graph) A temporal graph is a directed multi-graph G = (V,E, L,AV , AE),

where:

• V is a finite set of vertices, where each vertex v ∈ V is a pair 〈vid, τ〉. vid ∈ V is a unique

and opaque internal identifier and τ = [ts, te) is the time-interval for which the vertex exists

(also called the lifespan of the vertex).

• E is a finite set of edges, where each directed edge e = 〈eid, vidi, vidj, τ〉 ∈ E is a 4-tuple

identified by its unique identifier eid ∈ E, and the edge exists for the interval τ = [ts, te)

(lifespan of the edge). The edge connects the source vertex vidi with the sink vertex vidj,

with vidi, vidj ∈ V.

• L is a finite set of property (also called attribute) labels that can be associated with either

vertices or edges.

• AV (orAE) is a finite set of vertex (or edge) property values, where each 4-tuple 〈vid, l, val, τa〉 ∈
AV represents the value val associated with a label l ∈ L of the vertex (or edge) identified

by vid, for the interval τa. A label may have distinct values for non-overlapping inter-

vals during the lifespan of its vertex (or edge). Formally, for all vertex property values 1

〈vid, l, val, τa〉 ∈ AV , there does not exist any 〈vid, l, val′, τ ′a〉 ∈ AV such that τa u τ ′a and

val 6= val′.

Example. As a simple example of Temporal Graph, consider the transit network interval

graph shown earlier in Figure 1.1(a). Here we have V , E, L, and AE as vertices, edges,

property labels, and edge property values, respectively. In this example, there are no vertex

properties.

V = {〈A, [0,∞)〉, 〈B, [0,∞)〉, 〈C, [0,∞)〉, 〈D, [0,∞)〉, 〈E, [0,∞)〉, 〈F, [0,∞)〉}

E = {〈AB,A,B, [3, 6)〉, 〈AC,A,C, [1, 2)〉, 〈AD,A,D, [7, 9)〉, 〈BE,B,E, [8, 9)〉,

〈CE,C,E, [5, 9)〉, 〈DF,D, F, [1, 3)〉, 〈FE,F,E, [8, 9)〉}

L = {W}

AE = {〈AB,W, 4, [3, 5)〉, 〈AB,W, 3, [5, 6)〉, 〈AC,W, 3, [1, 2)〉, 〈AD,W, 2, [7, 9)〉,

〈BE,W, 2, [8, 9)〉, 〈CE,W, 4, [5, 9)〉, 〈DF,W, 1, [1, 3), 〈FE,W, 1, [8, 9)〉〉}

1This can similarly be extended for edges, but is omitted for brevity.
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3.2.1 Constraints

We define several constraints to guarantee the soundness of the temporal graph.

Constraint 1 (Unique vertices and edges) Any vertex (or edge) uniquely identified by its

vid (or eid) exists at most once, and only for a contiguous time-interval, and once it ceases to

exist, a vertex (or edge) with the same vid (or eid) can never re-occur at a later time-point.

Formally, for all vertices 1 〈vid, τ〉 ∈ V , there does not exist another vertex 〈vid′, τ ′〉 ∈ V such

that vid = vid′ and τ 6= τ ′.

Constraint 2 (Referential integrity of edges) For an edge to exist, the time-intervals as-

sociated with its source and its sink vertices must contain the edge’s time-interval. Formally,

for all edges 〈eid, vidi, vidj, τ〉 ∈ E, there exist vertices 〈vidi, τ ′〉 ∈ V and 〈vidj, τ ′′〉 ∈ V such

that τ v τ ′ and τ v τ ′′.

Constraint 3 (Referential integrity of properties) For a vertex property value to exist,

the interval of the vertex must contain the interval of the vertex property. Formally, for all

vertex properties 1 〈vid, l, val, τa〉 ∈ AV , there exists a vertex 〈vid, τ〉 ∈ V such that τa v τ .

Constraint 1 prevents the graph from having multiple copies of a vertex or edge at the

same time-point. Forcing a contiguous lifespan simplifies the reasoning about the behavior of

our computation model, though this may be trivially relaxed. Users may encode their custom

vertex or edge name as a property to indicate logical equivalence of reappearing vertices or

edges at disconnected time-intervals. Constraints 2 and 3 prevent an invalid graph by ensuring

that edges connecting vertices, or properties for vertex or edges, are concurrent.

3.2.2 Space Complexity

A temporal graph over k time-points, when modeled as a sequence of snapshots (Refer Fig. 1.1(c))

consumes O(k×(|V |+|E|)) space. Our interval graph model reduces this to O(|V |+(δ×q×|E|)),
where δ is the most times an edge in the graph is updated and q is number of properties. Usually,

δ � k and q is a small constant.
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Chapter 4

Thinking Like an Interval

In this chapter, we describe our novel and intuitive interval-centric distributed programming

abstraction as a unified model for designing Time Independent (TI) and Time Dependent (TD)

algorithms. This simplifies the user logic when designing algorithms over a temporal graph in

a distributed environment. We also propose an innovative time-warp operator that performs

efficient temporal alignment and grouping of messages with vertex states. This eases the tem-

poral reasoning required by the user logic, and avoids redundant execution of user logic and

messaging within an interval to provide key performance benefits.

4.1 Interval-centric Computing Model (ICM)

ICM lets users define their logic from the perspective of a single vertex, for a particular time-

interval, and this logic is executed on every active vertex and its active interval(s) (defined in

Sec. 4.2.1) in a data-parallel manner. We use Bulk Synchronous Parallel (BSP) execution [74],

which alternates a computation phase, where the user logic executes, with a communication

phase, where messages are bulk-transferred between vertices at a global barrier. These conti-

nue for several iterations till the application converges. Fig. 4.1 illustrates this.

The computation phase has two steps: compute and scatter, which are user-provided logic.

Compute operates on the vertex, its prior states and the incoming messages, in the context of

a particular interval, and can update the vertex’s current state for that interval. Then, scatter

operates on the out-edges for this vertex, and plays two roles. It decides if the updated state

should be sent as a message to the adjacent vertex the edge connects to, and if so, provides a

transformation function on the vertex state to create the message and its valid interval.

Once the compute and scatter logic execute for all the active vertices and their active

intervals, the communication phase delivers messages to the destination vertices. The current

15



Receive: M

Compute: V,S,M

Warp: SxM

Warp: SxE

Scatter: E, S

Bulk Send: M

Receive: M X

ZY

Compute: V,S,M

Warp: SxM

Warp: SxE

Scatter: E, S

Bulk Send: M

X

Y Z

Y

X Z

Z

Y

X

Y Z

Y

X Z

Z

Y

Su
pe

rs
te

p 
 i

Su
pe

rs
te

p 
 i+

1

Barrier

C
om

pu
ta

tio
n 

P
ha

se
C

om
m

un
ic

at
io

n 
P

ha
se

Figure 4.1: Supersteps and steps in ICM shown for the sample graph at the top right.

iteration (also called superstep) is finished, and the next iteration can start.

4.2 Dynamically Partitioned Vertex States

Vertices in ICM inherit static information from the temporal graph G, and also maintain dy-

namic states for the vertex as part of the user logic. For a vertex vid, the former includes the

interval τ of the vertex, its out-edges and their lifespans 〈eidj, vid, vidj, τj〉, and the properties

of vertex intervals, 〈vid, l, val, τa〉, and similarly edge intervals.

The dynamic state for a vertex consists of discrete states for a set of partitioned intervals

that cover the vertex’s lifespan. Compute and scatter can access these states, and compute can

update them in the context of these partitioned intervals. A state may hold any user-defined

content. Formally, if τ = [ts, te) is the static lifespan of a temporal vertex, then the state for
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the vertex, partitioned into n intervals, is:

S(τ) = {〈τi, si〉 | i ∈ [1, n] ∧ τi = [tis, t
i
e) ∧ t1s = ts ∧ tne = te ∧ ∀j ∈ [1, n), tje = tj+1

s }

i.e., the partitioned intervals cover the entire lifespan of the vertex, and no two partitioned

intervals overlap.

Importantly, states are dynamically repartitioned when the state for a sub-interval in the

partitioned interval’s state is updated. So if we have 〈τi, si〉 as a partitioned state for a vertex,

and compute updates the state for its initial sub-interval τj, where tjs = tis and tje < tie, with a new

value sj, then we automatically replace the state si with two states 〈[tis, tje), sj〉 and 〈[tje, tie), si〉.
Even without a state update, it is valid to split a partitioned interval into sub-intervals while

replicating their state values, i.e.,

{〈[ts, te), s〉} ≡ {〈[ts, t′), s〉, 〈[t′, te), s〉}

In the first iteration of ICM, each vertex starts with a single initialized state for its entire

lifespan 1. As the iterations progress and states for sub-intervals for the vertex are updated by

the compute logic, the number of partitions can grow. In the worst case, we will have as many

partitions as the number of time-points in the vertex’s lifespan.

4.2.1 Active Vertices and Intervals

Compute only executes on active vertices, and on active intervals within them. Vertices that

have received a message from the previous iteration are called active vertices, and the sub-

intervals within them which overlap with the interval of at least one message to that vertex are

active intervals. The time-warp operator (discussed in Sec. 4.3) finds the intersections between

the partitioned vertex state and the messages it receives, and compute is invoked on each

intersecting vertex sub-interval, with that state and those messages. Each time-point within

the active sub-intervals of a vertex will be part of exactly one compute method call.

Unlike Pregel, all our vertices implicitly vote to halt and deactivate after each superstep,

and get reactivated only if they receive a message in the next or a future iteration. This reflects

the design of most VCM algorithms [91, 123]. ICM stops when no vertices are activated by

messages in an iteration.

1In fact, the state of a vertex interval τj is pre-partitioned based on all sub-intervals τa of its static properties
l. So our computing unit is an interval property vertex. However, since properties are optional and to keep the
discussion concise, we consider states as partitioned only on the vertex interval and not its property intervals.
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4.2.2 Compute and Scatter Logic

Say, for the temporal vertex v = 〈vid, τ〉, τi v τ is an active sub-interval. The signature of the

user-defined interval-centric compute logic is given by:

compute(vid, 〈τi, si〉, M[ ]) → S(τi)

where 〈τi, si〉 is a partitioned state for the vertex inherited from the previous superstep, and

M [ ] is the set of messages received by this vertex from the previous superstep whose intervals

τm are such that τi v τm. The user’s logic can access the vertex’s and its edges’ static attributes

(E,AV and AE) for any time-interval. These, along with the prior state si and the received

messages M [ ] for this interval τi, are processed to return optionally updated partitioned states

for this interval S(τi) = {〈τj, sj〉 | τj v τi}.
Compute can be called data-parallelly on the active intervals of the vertex, and the exact

invocation is decided by the warp operator, discussed next. Since time-points in each active

interval are part of exactly one compute method execution, these updates can happen on the

partitioned states concurrently without interference.

The signature for the user’s transformation and message passing logic for an active vertex

is:

scatter(eid, 〈τ ′k, sk〉) → {〈τm, M〉}

Scatter is called for those out-edges eid of the active vertex with a time-interval τe such that

τk v τe. Here, 〈τk, sk〉 ∈
⋃
S(τi), for all partitioned state intervals τi that were updated by

compute, and τ ′k = τk ∩ τe. Scatter is called once for each such 〈τ ′k, sk〉.
Scatter returns one or more message payload(s) M with their associated time-interval τm

that is to be sent to the sink vertex for that edge. Scatter may be called data-parallelly on

the partitioned intervals of the out-edges, for each active vertex. Each time-point in an edge’s

lifespan is part of no more than one scatter execution in an iteration, and the exact number of

scatter calls is decided by warp. Scatter can access the edge’s static attributes (E,AE) for any

interval.

Typically, users implement scatter with two concise functions ft and fm that perform trans-

formations to give τm = ft(τk) and M = fm(sk). But several variations are possible to balance

brevity and flexibility. If the method returns an output message M = ∅, then no message

is sent for this edge and for this state interval. Scatter may omit the time-interval from the

output, in which case the input state interval is inherited, i.e., τm = τ ′k. If scatter itself is not

provided, then we send a single message with τm = τ ′k and M = sk.
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1 void init(Vertex v) {

2 v.setState(v.interval , ∞);

3 }

4

5 void compute(Vertex v, Interval t, int vstate , Message[ ] msgs) {

6 if(getSuperstep () == 1 && isSource(v)) {

7 v.setState(v.interval , 0);

8 return;

9 }

10 minVal = ∞;

11 for(Message m : msgs)

12 minVal = min(m.value , minVal);

13 if(minVal < vstate) v.setState(t, minVal);

14 }

15

16 Message scatter(Edge e, Interval t, int vstate){

17 int travelTime = e.getProp("travel -time");

18 int travelCost = e.getProp("travel -cost");

19 return new Message(e, new Interval(t.start + travelTime , ∞), vstate +

travelCost);

20 }

Algorithm 4.1: Temporal SSSP using ICM

Once messages for an active vertex are received in a superstep after the barrier, warp decides

their grouping and executes compute on them for the partitioned vertex states. Similarly, once

the compute step for a vertex completes, warp decides for each of its out-edges, the mapping

from the updated partitioned state to the sub-interval of the edge on which to invoke scatter.

This is discussed in Sec. 4.3.

4.2.3 Temporal SSSP Example

Finding paths with the shortest travel time, distance or cost is a common problem in temporal

graphs. The temporal single source shortest path (SSSP) [120] finds a time-respecting path with

the shortest travel cost between a single source vertex and every other vertex in a temporal

graph. Multiple solutions can exist for the same source to each destination vertex, but which

arrive at different points in time; each path will have the least cost for that interval of arrival.

The Java pseudo-code for temporal SSSP using ICM is shown in Alg. 4.1, and illustrated in

Fig. 4.2 for the interval graph from Fig. 1.1(a). The partitioned (dynamic) states for a vertex

maintain the current known lowest cost from the source to that vertex, for different intervals of

arrival. The init method is called only before superstep 1, and initializes a vertex’s state to ∞
for its entire lifespan. Compute is called on all vertices in superstep 1, with no messages and

for the entire vertex lifespan. Only the source vertex updates its state to a travel cost of 0 for
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Figure 4.2: SSSP execution using ICM for the temporal graph from Fig. 1.1(a). A is the source.
Travel time on an edge is 1.

its lifespan. Since compute has changed the state for the source vertex for its entire lifespan,

scatter is called once for each overlapping interval of its out-edges having a distinct property.

Each edge sends a message to its sink vertex with the travel cost to the current vertex (i.e., its

updated state; 0 for the source), plus the static property ‘travel-cost’ on that edge to the sink.

The start time of this message is set to the later of the starting interval of the updated state

(cost) or the edge’s lifespan, plus the ‘travel-time’ property on the edge. So the cost message

received at the sink vertex is valid from that arrival time and beyond. This logic lets both the

travel time and cost of the edge to be dynamic. This ends superstep 1.

E.g., in Fig. 4.2, A’s scatter is called twice for the edge to B, for the two interval properties

〈[3, 5], 4〉 and 〈[5, 6), 3〉. It sends a message with travel cost (0 + 4), valid for the interval
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1 void compute(Vertex v, int[] vState , Message[ ] msgs) {

2 if(getSuperstep() == 1 && isSource(v)) {

3 int[] state ← 0;

4 v.setState(state);

5 return;

6 }

7 int[] minVal ← ∞;

8 for(Message m : msgs) {

9 for(int timePoint : v.getProp("lifespan")) {

10 if(timePoint >= m.timePoint)

11 minVal[timePoint] = min(m.travelCost , minVal[timePoint ]);

12 }

13 }

14 for(int timePoint : v.getProp("lifespan")) {

15 if(minValue[timePoint] < vState[timePoint ]) {

16 vState[timePoint] = minValue[timePoint] ;

17 for(Edge e : v.getEdges ()) {

18 for(int eTimePoint : e.getProp("lifespan")) {

19 if(eTimePoint >= timePoint) {

20 int travelTime = e.getProp("travel -time", eTimePoint);

21 int travelCost = e.getProp("travel -cost", eTimePoint);

22 sendMessage( e.getTargetVertexId (),

23 new Tuple2( eTimePoint+travelTime ,

24 vState[timePoint ]+ travelCost )

25 );

26 }

27 }

28 }

29 }

30 }

31 v.setState(vState);

32 vertex.voteToHalt ();

33 }

Algorithm 4.2: Temporal SSSP using VCM
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[3 + 1,∞) for the first, and 〈[5 + 1,∞), 0 + 3〉 for the other.

In future supersteps, a vertex may receive messages from its neighbor(s) for one or more

of its sub-intervals, with the cost for that interval of arrival. This becomes an active vertex

interval. After warp, compute checks if the current cost (partitioned state) for that vertex

interval is reduced by any message sent to that interval, and if so, updates it. Any state

update causes scatter to be called on all edge properties overlapping this interval, and the new

candidate lowest cost is propagated to its neighbors with an updated arrival time.

E.g., in superstep 2, compute is called twice on vertex B after warp, once for the interval

[4, 6) with message value {4} and once for [6,∞) with messages {3, 4}. The prior states for

both these intervals of B is ∞, and compute updates these to 4 and 3, respectively. Note

that B’s state has been dynamically repartitioned into 3 sub-intervals. Scatter is called on the

edge B to C for its property 〈[8, 9), 2〉 which overlaps with state 〈[6,∞), 3〉, causing message

〈[8 + 1,∞), 3 + 2〉 to be sent.

The algorithm terminates when all vertices and their arrival time intervals have stabilized

to the least cost from the source, if feasible – i.e., no states change – and no messages are in

flight. E.g., at the final state, vertex F cannot be reached from A on the temporal graph; C

and D can be reached during 1 contiguous interval each with costs 3 and 2; while B and E can

be reached during 2 different intervals, with a different lowest cost for each.

In contrast, we show the pseudo-code for implementing temporal SSSP directly using a

vertex-centric computing model (VCM) in Alg. 4.2. As we can see, the lines of code that is

required is much more, and can cause the execution time to be longer as well due to unnecessary

executions of the vertices’ compute function, leading to a longer execution time.

4.3 Time-warp

Adding time-intervals to compute and scatter is a novel temporal extension to Pregel [74] or

GAS [72] models. It enables a unified distributed programming abstraction over temporal

graphs. However, the critical benefit of ICM comes from a unique data transformation we pro-

pose: time-warp (or warp). It is a powerful construct that lets the user logic operate consistently

over temporal messages and partitioned vertex states, and intuitively design temporal graph al-

gorithms as if for a non-temporal graph. It is analogous to the shuffle operation in MapReduce

which transforms the simple Map and Reduce functions into powerful primitives. Also, warp

guarantees automatic sharing of compute and messaging across adjacent time-points, minimiz-

ing the number of calls to compute and the messages sent. This enhances the performance of

ICM algorithms for temporal graphs having non-trivial lifespans on their entities.

The warp step happens between: (1) the message receipt at the start of a superstep and
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Figure 4.3: Time-warp operating on the partitioned states and input messages for an active
vertex.

the compute step, and (2) the compute and the scatter steps. It performs temporal alignment,

re-partitioning and grouping that decides the number of calls to compute and scatter, and their

parameters.

The warp operator takes two sets: an outer set containing partitioned intervals and values,

and an inner set with intervals and values. It returns a single partitioned set of triples, each

containing an interval, a value from the outer set, and a set of values from the inner set.

Intuitively, before the compute step for an active vertex, warp groups the input messages for

a vertex and their intervals (inner set) that overlap with the partitioned states for the vertex

(outer set), to form the fewest number of (re)partitioned states that are each a temporal subset

of the group of messages. This may repartition the vertex states, and duplicate a message

to multiple groups that are each a partitioned vertex state. Each partitioned state and its

grouped messages forms a single triple in the output from warp, and causes a single invocation
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to compute for that active vertex interval with these as input parameters.

This ensures two things: (1) the user’s compute logic can leverage this exact alignment

between the message intervals and the partitioned state in its invocation, and (2) the compute

itself is called as few a times as possible, to avoid redundant computation and hence improve

performance.

Similarly, before the scatter step for an active vertex, the partitioned updated states from

the compute step (outer set) is warped with the temporal out-edges for that vertex (outer set)

so that each edge is invoked for a sub-interval which has one (re)partitioned state-change that

fully overlaps with that interval and also with the edge’s lifespan. This too guarantees that the

scatter for an edge sub-interval receives a state update applicable for that whole interval, and

calls to scatter (and hence, message generation) is minimized.

Intuitively, longer the intervals of items in the inner and outer sets and greater their overlap,

fewer the tuples in the output set and lesser the calls to the user logic.

4.3.1 Detailed Warp Example

Fig. 4.3 illustrates warp for the 3 partitioned states S of an active vertex that receives 5 messages

M . A time-join (1̃S×M) operation [103] over these sets finds the intersections between the

intervals of a state and a message. E.g., m2 with an interval of [2, 7) overlaps with the intervals

of s1 and s2, and results in 〈[2, 5), s1,m2〉 and 〈[5, 7), s2,m2〉. Warp is a form of self-join over

the time-join, with temporal semantics that detect the boundaries of the intersections in these

time-joins (e.g., 0, 2, 4, 5, 7, 9, 10). For intervals formed from adjacent pairs of boundaries (e.g.,

[0, 2), [2, 4)), it groups messages in that interval with the state of the vertex (e.g., 〈[0, 2), s1,m1〉,
〈[2, 4), s1, {m1,m2}〉). The output tuples are temporally partitioned. Each tuple forms a call
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to compute, with the time-aligned state and the message group passed to it, thus simplifying

the user logic. The warp of the updated states after compute with the out-edges is similar, and

triggers the execution of scatter. In practice, a time-join suffices before scatter if the edges’

properties are time-invariant.

4.3.2 Formal Definition

Formally, time-warp ( 1S×M) operates on two sets of tuples S (outer set) and M (inner set)

both having 2-tuples with a time-interval and a value. The outer set S must be temporally

partitioned. The time-join (1̃S×M) operator [103] on the two sets is defined as:

S = {〈τs, s〉}

M = {〈τm,m〉}

1̃
t
S×M = {〈τt, st,mt〉 | 〈τs, st〉 ∈ S ∧ 〈τm,mt〉 ∈M ∧

τs u τm ∧ τt = τs ∩ τm}

It is a form of natural join over the intervals that identifies sub-intervals of the inner set

which are present in the outer, and returns triples in the output set which have the common

sub-intervals from both sets and their associated values. Using this, we propose and define the

time-warp operator as:

1S×M = {〈τpq, sr,Mr〉 |(
∀ p ∈ 1̃

p
S×M , q ∈ 1̃

q
S×M | sp = sq,

τpq = [ts, te) | ts ∈ {tps, tpe} ∧ te ∈ {tqs, tqe}
)
∧(

∀ r ∈ 1̃
r
S×M | sr = sp = sq,

(τpq 6 uτr ∨ τpq v τr) ∧

τpq v τr =⇒ mr ∈Mr

)
∧

Mr 6= ∅}

The start and end times of each sub-interval in the time-join forms the time-point boundaries

at which the tuples from the two sets temporally overlap. The candidate time-intervals (τpq)

for the warp are formed from the cross-product of each pair of boundary points of an interval,

{tps, tpe}× {tqs, tqe}, for a given common value sp = sq from the outer set S. Implicitly, only valid

intervals are considered, i.e., the start time-point of the interval must be smaller than the end

time-point.

Each candidate interval must either be fully contained within or fully disjoint with every
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interval τr of the time-join which has the same value as in the outer set. This ensures that the

warp’s interval does not cross a boundary time-point but rather is exactly aligned with them.

For each candidate interval that is contained within a time-join interval, we group the values mr

from the inner set into the output Mr; we only include those output triples with a non-empty

set of inner values.

4.3.3 Properties of Time-warp

The warp operator guarantees the following properties:

1. Valid Inclusion. Every value-pair from across the two sets, which both exist at an

overlapping time-point, is included for that time-point in an output triple. Formally, for

all tuples 〈τj, sj〉 ∈ S and 〈τk,mk〉 ∈ M , if τj u τk, then for all time-points t ∈ τj ∩ τk,

there exists an output tuple 〈τ, sj,M〉 ∈ 1S×M such that t ∈ τ and mk ∈M.

2. No Invalid Inclusions. No value from the two sets are included in the output for a time-

point unless they both respectively exist in their sets for that time-point. Formally, for

any output tuple 〈τ, sj,M〉 ∈ 1S×M , there must exist tuples 〈τj, sj〉 ∈ S and 〈τk,mk〉 ∈M
such that mk ∈M, τ v τj and τ v τk.

3. No Duplication. A value at a time-point from the outer set appears in no more than

one output triple for that time-point. Formally, there are no two output tuples 〈τj, sj,
Mj〉, 〈τk, sk,Mk〉 ∈ 1S×M such that τj u τk and sj = sk.

4. Maximal. The number of output triples are temporally grouped into as few as possible.

Formally, there are no two output tuples 〈τj, sj, Mj〉, 〈τk, sk,Mk〉 ∈ 1S×M with sj = sk,

Mj = Mk, and either overlapping intervals τj u τk or adjacent intervals τj a τk.

Here, # 1–3 ensure correctness of the grouping, while # 4 limits invocation of the user logic

to the minimally possible.

4.3.4 Time-warp in Temporal SSSP Example

Continuing the earlier example, warp automatically enforces temporal constraints in the calls

to compute and scatter. This makes the user code concise, correct, and prevents its unnecessary

execution. Before the compute step, warp ensures that the update messages are aligned and

grouped with the (re)partitioned vertex states. So compute can rely on the costs in the messages

being applicable to the entire sub-interval the logic is called for, and can simply compare the

state’s cost with the message’s cost (lines 10–13 of Alg. 4.1).
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E.g., when superstep 3 starts in Fig. 4.2, E calls warp on its prior state 〈[0,∞),∞〉, and

the messages 〈[9,∞), 5〉 from B and 〈[6,∞), 7〉 from C. Warp returns the tuples 〈[6, 9),∞, {7}〉
and 〈[9,∞),∞, {5, 7}〉 that each call compute. Compute uses a simple min logic to change the

travel cost (state) to 7 for the interval [6, 9), and to 5 for [9,∞). We also show the pre-compute

warp in superstep 2 for B and C.

So the user logic avoids comparing the temporal bounds of each message with each state, and

explicitly repartitioning the state before updating its cost. This makes the logic near-identical

to the comparable non-temporal VCM algorithm. Also, the maximal property of warp ensures

that compute is called only once for all messages that temporally intersect with a partitioned

state, for that interval. This avoids duplication of calls.

27



Chapter 5

Temporal Graph Algorithms

In this chapter, we look at how various Time Independent (TI) and Time Dependent (TD)

algorithms from literature can be designed using our unified ICM primitives.

5.1 Time-Independent Algorithms

We formulate ICM variants for 4 TI algorithms: Breadth First Search (BFS) [74], Weakly

Connected Component (WCC) [123], Strongly Connected Component (SCC) [91] and PageRank

(PR) [74]. As discussed before, TI algorithms behave such that the algorithm runs on each

time-point or snapshot of the temporal graph independently. The Vertex-centric Computing

Model (VCM) logic for these algorithms can be reused as is for the compute and scatter

logic of ICM since the default behavior of ICM assigns appropriate intervals to the states and

messages. The advantage of ICM is that it compute over adjacent time-points (intervals) in a

single pass, and the output returned for different intervals of a vertex in an interval graph is to

be interpreted separately for each time-point in that interval and for all vertex outputs of the

graph at that time-point. E.g., Weakly Connected Components for vertices in the tiny graph

in Fig. 4.1 is returned as A={[1,9):A}, B={[1,3):B, [3,6):A, [6,9): B}, C={[1,2):A, [2,9):C},
D={[1,7):D, [7,9):A}, E={[1,5):E, [5,8):C, [8,9):B}, and , F={[1,3):D, [3,9):F}, then vertices

A, B, C, D, E and F at time-point 8 belong to components A, B, C, A, B, and F respectively.

5.1.1 Breath First Search (BFS)

The BFS algorithm is a popular traversal algorithm. It starts from some user-defined source

vertex (also referred to as the root) and for each superstep si, explores all its si hop neighbors

before moving on to vertices at increasing hop distance. This may repeat till all vertices in the

graph are visited, or for a fixed hops (or depth) from the source vertex. The time-independent

variant of this algorithm identifies hop distance for sub-intervals of a vertex from user-defined
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1 void init(Vertex v) {

2 v.setState(v.interval , ∞);

3 }

4

5 void compute(Vertex v, Interval t, long currentDistance , Message[ ] msgs) {

6 if(getSuperstep () == 1 && isSource(v)) {

7 v.setState(v.interval , 0);

8 return;

9 }

10 long candidateDistance = ∞;

11 for(Message m : msgs) {

12 candidateDistance = min(m.value , currentDistance);

13 }

14 if(candidateDistance < currentDistance)

15 v.setState(t, candidateDistance);

16 }

17

18 Message [] scatter(Edge e, Interval t, long currentDistance){

19 return new Message(e, t, currentDistance +1);

20 }

Algorithm 5.1: Time-Independent Breath First Search using ICM

source vertex. Computed hop distance is applicable to all time-points in that sub-interval.

The ICM algorithm, shown in Alg. 5.1, is identical to the vertex-centric logic for BFS on

a static graph [74]. In the 1st superstep, each vertex checks if it is the source (line 3) and if

so, sets its hop distance as 0 (line 7) for entire vertex lifetime. All non-source vertices set their

hop distance as ∞ (line 2). In supersteps>1, each partitioned interval vertex which receives

message, computes the minimum candidate distance from all these messages (line 11-13) and

updates its current distance to candidate distance post comparison (line 14-15) for that sub-

interval. It additionally, shares this updated hop distance with its temporal out-neighbors (line

19) via interval message. Computation halts when hop distance for no partitioned interval is

updated and no messages are in-flight, at which point all sub-intervals during which non-source

vertices are reachable from source vertex have been explored and labeled.

5.1.2 Weakly Connected Components (WCC)

The WCC algorithm groups the vertices in the graph into components such that there exists

an undirected path between every pair of vertices in the component. All vertices in a WCC

are labeled with the component ID they belong to, e.g., the vertex with the smallest ID in

that component. The time-independent variant of this algorithm operates on an undirected

temporal graph, and labels sub-intervals of a vertex with the component ID; this ID applies
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1 void init(Vertex v) {

2 return;

3 }

4

5 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

6 if(getSuperstep () == 1) {

7 v.setState(v.interval , v.id);

8 return;

9 }

10 minComponentId = ∞;

11 for(Message m : msgs) {

12 minComponentId = min(m.value , minComponentId);

13 }

14 if(minComponentId < componentId) { v.setState(t, minComponentId); }

15 }

16

17 Message [] scatter(Edge e, Interval t, long componentId){

18 return new Message(e, t, componentId);

19 }

Algorithm 5.2: Time-Independent Weakly Connected Components using ICM

to all time-points in that interval. So, for each time point, all vertices that have the same

component ID are part of the same WCC.

The ICM algorithm, shown in Alg. 5.2, in 1st superstep, every vertex updates (line 7) its

component ID to its vertex ID for its entire lifespan and propagates (line 18) it to its temporal

out-neighbors. In future supersteps, each partitioned vertex interval picks the smallest ID from

the incoming interval messages (lines 11-14) and propagates it. ICM’s warp automatically

divides the vertex and edge lifespans into parts before compute and scatter, ensuring that the

relevant minimum vertex ID is correctly passed to temporally overlapping intervals and spatially

connected vertices that form a component. ICM lets us find components common to multiple

adjacent time-points in one pass, rather than on each snapshot separately. Further, if multiple

WCCs exist, all are found in a single pass as well.

5.1.3 Strongly Connected Components (SCC)

The time-independent variant of SCC algorithm operating on a directed temporal graph, groups

vertices into distinct components for a sub-interval, such that every vertex for each time-point

during that sub-interval is reachable from every other vertex assigned to the same component

through a directed path. Each such interval component is uniquely labeled using the smallest

vertex identifier associated with a member vertex.

Like it static VCM counterpart [91], ICM’s time-independent variant, shown in algorithm 5.3,
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also computes SCC using a MasterCompute model having four computation phases (Algo-

rithm 5.3). MasterCompute permits centralized computation prior to every superstep, and

its output will be available to all workers before computation is triggered for any vertex.The

compute and scatter logic for each of the phases is shown in Algorithm 5.4.

1. The TRANSPOSE phase takes two supersteps. Each vertex first propagates its vertex

ID (line 52) to all its out-neighbors. Next, on every vertex, for each received message, an

in-edge from the current vertex to the source vertex (line 15-16) is created.

2. The TRIMMING phase takes one superstep. Each vertex with no out-edges and/or no

in-edges during some partitioned interval in its entire lifespan (if any), assigns its vertex

ID as its component ID for the sub-interval and marked that sub-interval as converged

(line 17-18). Converged partition intervals for a vertex ignore all subsequent messages

(line 8).

3. The FORWARD phase is identical to WCC. Here, each vertex sets its component ID to

its vertex ID for all active sub-intervals and propagates it to its temporal out-neighbors.

Each partitioned interval vertex, assigns itself the smallest component ID it has received

for the sub-interval until convergence.

4. The BACKWARD phase is split into two sub-phases: Backward-Start and Backward-

Rest. The Backward-Start sub-phase takes one superstep. For each vertex, every par-

titioned interval whose component ID equals to its vertex ID (line 32), propagates its

component ID to its temporal in-neighbors computed in the TRANSOPOSE phase, and

marks itself as converged (line 34) for that sub-interval. In the Backward-Rest sub-phase,

each partitioned interval vertex receiving a component ID that matches its current com-

ponent ID (line 39), propagates its ID to its temporal in-neighbors and marks itself as

converged (line 42) for that sub-interval. The MasterCompute logic (shown in Alg. 5.3)

sets the computation phase to Forward Phase. Computation halts when all interval ver-

tices have marked themselves deactivated.

The Alg. 5.4 repeats the Trimming, Forward, Backward-Start and Backward-Rest phases,

each time detecting and removing one or more strongly connected components from the graph.

It terminates when all vertices have converged.

5.1.4 PageRank (PR)

PageRank (PR) [81] is a classic centrality algorithm for identifying the importance of web pages

(vertices) that link to each other (edges) in a web graph. We design a time-independent ICM
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1 enum Phases = {"TRANSPOSE", "TRIMMING", "FORWARD", "BACKWARD_START",

"BACKWARD_REST"};

2 enum scatterDirection = {"IN", "OUT", "BOTH"};

3 GLOBAL currPhase , vertexUpdated , scatterDirection;

4

5 void MasterCompute() {

6 if (getSuperstep () == 1) {

7 currPhase == "TRANSPOSE";

8 scatterDirection = "OUT";

9 } else {

10 switch (currPhase) {

11 case "TRANSPOSE":

12 currPhase == "TRIMMING";

13 break;

14

15 case "TRIMMING":

16 currPhase == "FORWARD";

17 break;

18

19 case "FORWARD":

20 if (! vertexUpdated) {

21 currPhase == "BACKWARD_START";

22 scatterDirection = "IN";

23 } break;

24

25 case "BACKWARD_START":

26 currPhase == "BACKWARD_REST";

27 break;

28

29 case "BACKWARD_REST":

30 if (! vertexUpdated) {

31 currPhase == "TRIMMING";

32 scatterDirection = "OUT";

33 } break;

34 }

35 }

36 }

Algorithm 5.3: MasterCompute for Time-Independent Strongly Connected Components using
ICM
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1 GLOBAL currPhase , vertexUpdated;

2 void init(Vertex v) {

3 activateInterval(v, t);

4 }

5

6 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

7 if(isActive(v, t)) {

8 switch(currPhase) {

9 case "TRANSPOSE":

10 v.setState(v.interval , v.id);

11 break;

12

13 case "TRIMMING":

14 for(Message m : msgs)

15 v.createInEdge(m.interval , m.value);

16 if(v.outEdgeCount == 0 || v.inEdgeCount == 0 )

17 deactivateInterval(v, t); return;

18 v.setState(t, v.id);

19 break;

20

21 case "FORWARD":

22 minComponentId = ∞;

23 for(Message m : msgs)

24 minComponentId = min(m.value , minComponentId);

25 if(minComponentId < componentId) {

26 v.setState(t, minComponentId);

27 vertexUpdated = TRUE;

28 } break;

29

30 case "BACKWARD_START":

31 if(v.id == componentId) {

32 v.setState(t, componentId);

33 deactivateInterval(v, t);

34 } break;

35

36 case "BACKWARD_REST":

37 for(Message m : msgs) {

38 if(m.value == componentId) {

39 v.setState(t, componentId);

40 vertexUpdated = TRUE;

41 deactivateInterval(v, t);

42 break;

43 }

44 }

45 }

46 }

47 return;

48 }

49

50 Message [] scatter(Edge e, Interval t, long componentId){

51 return new Message(e, t, componentId);

52 }

Algorithm 5.4: Compute and Scatter for Time-Independent Strongly Connected Components
using ICM 33



algorithm for it where the rank for each vertex at each time-point in its lifespan is calculated

independently, based on the state of the graph at that time-point.

In Alg. 5.5’s compute method, we iterate through each time-point in an interval to update

the PR for that point based on the partial PR sum from the messages. Similarly, in scatter, we

send a message to the sink vertex for each edge, with the partial PRs for each time-point in its

interval. This repeats iteratively for a fixed number of supersteps (10, in our experiments), or

by testing for convergence using a residual threshold. numVertices and numEdges are built-in

helper functions.

Other than iterating through each time-point (lines 8 and 14), the logic is similar to a

vertex-centric algorithm on a static graph [74]. ICM automatically exposes temporal parallelism

for each time-point – after the first superstep, all states have been partitioned to individual

points on whom compute (or scatter) is called concurrently. Using VCM, one has to run the

algorithm separately for each snapshot.

1 void init(Vertex v) {

2 for(TimePoint p : v.interval) {

3 v.setState(p, 1/numVertices(p) )

4 }

5 }

6

7 void compute(Vertex v, Interval t, float vstate , Message[ ] msgs) {

8 for(Message m : msgs) {

9 sum = sum + m.value;

10 }

11 for(TimePoint p : t) {

12 v.setState(p, 0.15/numVertices(p) +0.85* sum);

13 }

14 }

15

16 Message [] scatter(Edge e, Interval t, float vstate){

17 Message [] msgs;

18 for(TimePoint p : t) {

19 msgs.add(new Message(e, p, vstate/numEdges(p) ));

20 } return msgs;

21 }

Algorithm 5.5: Time-Independent PageRank using ICM
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5.2 Time-Dependent Algorithms

Programming primitives like ICM help rapidly design different temporal graph algorithms from

existing ones. Diverse TD path algorithms, such as Earliest Arrival Time (EAT) [120], Fastest

Arrival Time (FAST) [120], Latest Departure time (LD) [120], Reachability (RH) [119] and

Time-Minimum Spanning Tree (TMST) [46], can be solved with minimal changes to the tem-

poral SSSP algorithm we introduced earlier. As discussed before, the behavior of TD algorithms

is to span across intervals during execution, and the results returned are valid for the associated

time ranges, as was shown for Temporal SSSP in Fig. 4.2.

5.2.1 Earliest Arrival Time (EAT)

Earliest Arrival Time (EAT) (or Foremost Journey [121]) computes the earliest time one can

reach a target vertex y from source x using a time-respecting path [120]. Here, we are only

interested in the earliest time (unique for each vertex) at which we can reach a vertex and not

in subsequent intervals of arrival or cost of travel. ICM program for computing EAT (shown in

Alg. 5.6) can be obtained by replacing just the travel cost with vertex arrival time in Alg. 4.1

(line 17). Note that temporal bounds are automatically enforced by TimeWarp.

1 void init(Vertex v) {

2 v.setState(v.interval , ∞);

3 }

4 void compute(Vertex v, Interval t, long currentArrivalTime , Message[ ]

msgs) {

5 if(getSuperstep () == 1 && isSource(v))

6 v.setState(v.interval , 0); return;

7 long candidateEarliestArrival = ∞;

8 for(Message m : msgs) {

9 if(m.value < candidateEarliestArrival)

10 candidateEarliestArrival = m.value;

11 }

12 if(candidateEarliestArrival < currentArrivalTime)

13 v.setState(t, candidateEarliestArrival);

14 }

15 Message scatter(Edge e, Interval t, long earliestArrivalTime){

16 int travelTime = e.getProp("travel -time");

17 long arrivalTime = max(t.start , earliestArrivalTime) + travelTime ;

18 return new Message(e, new Interval(arrivalTime , ∞), arrivalTime);

19 }

Algorithm 5.6: Time-Dependent Earliest Arrival Time using ICM
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5.2.2 Fastest Travel Time (FAST)

Fastest Travel Time (FAST) computes the minimum time in which one goes from source vertex

x to any other reachable vertex y via a time-respecting path [120]. Like EAT, fastest travel time

is unique for each source-destination pair across all candidate time-respecting paths, however

the fastest path themselves are not unique. E.g., For a given source-destination pair, more than

one path departing (or arriving) from source (on destination) at different time-points can result

in effectively same elapsed time. In context of a transit network, the goal is to minimize total

travel time, which includes time spend on-road and waiting time. Sometimes reducing the time

spend on-road can be more economic than arriving at the destination in shortest amount of

time, i.e., minimizing on-road time at the cost of increased total travel time [67]. We highlight

that, by excluding the waitingTime (line 21) from totalTravelTime (line 23) computation in

Alg. 5.7, we can minimize the on-road time (as computed by MORT [67]) instead of total

elapsed time. As with SSSP and EAT, the temporal bounds are automatically enforced by

TimeWarp.

1 void init(Vertex v) {

2 v.setState(v.interval , new Pair <long , long >(∞, ∞));

3 }

4

5 void compute(Vertex v, Interval t, Pair <long , long > vstate , Message[ ]

msgs) {

6 if(getSuperstep () == 1 && isSource(v))

7 v.setState(v.interval , new Pair <long , long >(0, 0));

8 return;

9 }

10 long candidateFastestTravelTime = ∞, candidateArrivalTime = ∞;

11 for(Message m : msgs) {

12 if(m.value._2 < candidateFastestTravelTime)

13 candidateArrivalTime = m.value._1;

14 candidateFastestTravelTime = m.value._2;

15 }

16 if(candidateFastestTravelTime < vstate.fastestTravelTime)

17 v.setState(t, new Pair <long , long >( candidateArrivalTime ,

candidateFastestTravelTime));

18 }

19

20 Message scatter(Edge e, Interval t, Pair <long , long > vstate){

21 long waitingTime = t.start - vstate.arrivalTime;

22 if(isSource(e.getSRC ())) { waitingTime = 0; }
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23 long totalTravelTime = vstate.fastestTravelTime + waitingTime +

e.getProp("travel -time");

24 long arrivalTime = t.start + e.getProp("travel -time");

25 return new Message(e, new Interval(arrivalTime , ∞), new Pair <long ,

long >( arrivalTime , totalTravelTime) );

26 }

Algorithm 5.7: Time-Dependent Fastest Travel Time using ICM

5.2.3 Latest Departure (LD)

Latest Departure (LD) lets one compute the largest time-point by which one must leave from ver-

tex y in order to reach destination vertex x by given time (referred to as Latest Arrival Time) via

a time-respecting path. Both, the destination vertex and Latest Arrival Time are user-specified.

Like EAT and FAST, here we are interested in computed the latest departure time (which is

unique for each vertex) and not the actual temporal path, however the algorithm can be triv-

ially extended to accommodate it. Unlike Temporal SSSP, LD operates on an inverted graph

i.e. source and destination for all edges are swapped. However, edge lifespan remain unaltered.

Such a inverted graph allows LD to traverse from sink to source, in space and time. Temporal

bounds are automatically enforced by setting message interval to [−∞, departureT ime).

1 void init(Vertex v) {

2 v.setState(v.interval , −∞);

3 if(isDestination(v) && LATEST_ARRIVAL_TIME < v.start)

4 haltComputation ();

5 }

6 }

7

8 void compute(Vertex v, Interval t, long currentDepartureTime , Message[ ]

msgs) {

9 if(getSuperstep () == 1 && isDestination(v))

10 long latestDeparture = min(LATEST_ARRIVAL_TIME , v.end -1);

11 v.setState(new Interval(v.start , latestDeparture), latestDeparture);

12 return;

13 }

14 long candidateLatestDeparture= −∞;

15 for(Message m : msgs)

16 candidateLatestDeparture = max(m.value , candidateLatestDeparture);

17 if(candidateLatestDeparture > currentDepartureTime)

18 v.setState(t, candidateLatestDeparture);

19 }
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20

21 Message scatter(Edge e, Interval t, long latestDepartureTime){

22 int travelTime = e.getProp("travel -time");

23 long departureTime = min(t.end -1, latestDepartureTime - travelTime) ;

24 if(departureTime >= t.start)

25 return new Message(e, new Interval(−∞, departureTime),

departureTime );

26 return null;

27 }

Algorithm 5.8: Time-Dependent Latest Departure using ICM

5.2.4 Time-Minimized Spanning Tree (TMST)

Time-Minimized Spanning Tree (TMST) constitutes the computation of a spanning tree which

results in the fastest spread from a source vertex to each temporally reachable vertex. In the

context of social networks, the spread corresponds to information dissemination, which can be

important to social-media marketing campaigns or to study of how fake news spreads [46]. To

find the TMST from a given source (Alg. 5.9), we add the parent vertex ID to the state and

the message value (lines 12 and 17) of the Temporal SSSP algorithm in Alg. 4.1, in addition to

replacing travel cost with arrival time, to rebuild the spanning tree.

1 void init(Vertex v) {

2 v.setState(v.interval , new Pair <long , long >(∞, -1));

3 }

4

5 void compute(Vertex v, Interval t, Pair <long , long > vstate , Message[ ]

msgs) {

6 if(getSuperstep () == 1 && isRoot(v))

7 v.setState(v.interval , new Pair <long , long >(0, v.getId ()));

8 return;

9 }

10 long candidateEarliestArrival = ∞, candidateParentID = -1;

11 for(Message m : msgs) {

12 if(m.value._1 < candidateEarliestArrival) {

13 candidateEarliestArrival = m.value._1;

14 candidateParentID = m.value._2;

15 }

16 }

17 if(candidateEarliestArrival < vstate.earliestTime)

18 v.setState(t, new Pair <long , long >( candidateEarliestArrival ,
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candidateParentID));

19 }

20

21 Message scatter(Edge e, Interval t, Pair <long , long > vstate){

22 int travelTime = e.getProp("travel -time");

23 long arrivalTime = max(t.start , earliestArrivalTime) + travelTime ;

24 return new Message(e, new Interval( arrivalTime ,∞), new Pair <long ,

long >( arrivalTime , e.getSRC ()));

25 }

Algorithm 5.9: Time-Minimized Spanning Tree using ICM

5.2.5 Temporal Reachability (RH)

Temporal Reachability (RH) [119] checks if a valid temporal path exists between a source and

a sink vertex. If the shortest temporal path from source to sink vertex is k-hops in length, the

ICM algorithm shown in Algorithm 5.10 labels every temporally reachable vertex within a k-hop

neighborhood of the source vertex, including the sink vertex as “reachable” and preemptively

halts in the kth superstep. If the sink vertex is temporally unreachable, the algorithm labels

every temporally reachable vertex and only halts when each of them is marked “reachable”. The

sink vertex in this case remains marked as “unreachable”. haltComputation() is a method, if

invoked, will halt computation post completion of current superstep, even if there are messages

in the system or vertices that have not voted to halt.

1 void init(Vertex v) {

2 v.setState(v.interval , "unreachable");

3 }

4

5 void compute(Vertex v, Interval t, enum vstate , Message[ ] msgs) {

6 if(getSuperstep () == 1 && isSource(v))

7 v.setState(t, "reachable");

8 return;

9 }

10 for(Message m : msgs) {

11 if(m.value == "reachable") {

12 v.setState(t, "reachable");

13 if(isSink(v)) { haltComputation (); }

14 break;

15 }

16 }

17 }
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18 Message scatter(Edge e, Interval t, enum vstate){

19 int travelTime = e.getProp("travel -time");

20 return new Message(e, new Interval(t.start + travelTime , ∞),

"reachable");

21 }

Algorithm 5.10: Temporal Reachability using ICM

5.2.6 Temporal Triangle Count (TC)

Temporal Cycles indicate the presence of feedback loops and naturally appear in many real-

world problems such as stock trading, financial networks, social networks and biological net-

works. Temporal Triangle Count [64, 82] involves counting temporal cycles (interaction must

respect temporal order) of length 3, which starts and ends at the same vertex. Fig. 5.1(b) con-

tains examples of valid temporal cycles A-C-B-A and C-F-D-C from example graph shown in

Fig. 5.1(a). However, triangles E-C-B-E shown in Fig 5.1(c) is not an invalid temporal triangle

as temporal order is not respected.
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Figure 5.1: Example Temporal Graph

For triangle counting, the Algorithm 5.11 computes its strict two-hop temporal neighbor-
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1 void init(Vertex v) {

2 return;

3 }

4

5 void compute(Vertex v, Interval t, Long[] nbrs , Message[ ] msgs) {

6 Long[] nbrs;

7 if(getSuperstep () == 1) {

8 nbrs.add(v.id);

9 } else if(getSuperstep () == 2) {

10 for(Message m : msgs) {

11 nbrs.addAll(m.value ());

12 }

13 } else if(getSuperstep () == 3) {

14 long count =0;

15 for(Message m : msgs) {

16 for(Long nbr : m.value) {

17 if(v.getIntervalEdge( t , nbr)!=null) { ++ count; }

18 }

19 } nbrs.add(count);

20 } v.setState(t, nbrs);

21 }

22

23 Message scatter(Edge e, Interval t, Long[] nbrs){

24 if(getSuperstep () <3)

25 return new Message(e, new Interval(t.start + 1, ∞), nbrs);

26 }

Algorithm 5.11: Temporal Triangle Count using ICM

hood and checks if any of its adjacent vertices are part of the neighborhood. If so, it increments

the number of triangles identified. Temporal Order among vertices is implicitly ensured while

collecting 2-hop neighborhood due to TimeWarp.

5.2.7 Local Clustering Coefficient (LCC)

Local Clustering Coefficient (LCC) of a vertex quantifies how close its neighborhood is to

being a temporal clique [45] and is often used in literature for detecting outliers and for role

discovery [124]. We define a temporal wedge as a pair of time-respecting edges that share exactly

one common vertex, and the common vertex is called the center of the wedge. The other vertex

incident on first and second edge forming the temporal wedge is termed as the head and tail

respectively. A temporal wedge is called closed if an edge between tail and head of the wedge

exists and results in formation of a temporal triangle. The time-dependent clustering coefficient

of a center vertex u is then defined as the fraction of closed temporal wedges present in the
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temporal graph to temporal wedges centered at vertex u :

LCC(u) =
CW (u)

W (u)
(5.1)

where, CW (u) denotes the number of closed temporal wedges centered at vertex u and W (u)

denotes the number of temporal wedges centered at vertex u .

C

A

B
[1,2)

[4,5)

Head

Center

Tail

Closed?

Figure 5.2: Anatomy of Temporal Wedge

As shown in Alg. 5.12, LCC operates in four phases : In phase 1, each vertex accumulates

its one-hop neighbors. In phase 2, each vertex computes all temporal wedges for which it is the

center vertex and forwards each such temporal wedge to its respective tail vertex. In phase 3,

each tail vertex receive the wedge from center vertex and inspects its out-edges to determine if

the candidate temporal wedge can be closed. If the wedge is indeed closed, it messages value 1

to the center of the wedge otherwise it ignores the wedge. Finally, in Phase 4, the center vertex

accumulates all values received from respective tails and computes its local clustering-coefficient

using equation 5.1.

1 void init(Vertex v) {

2 v.createProperty("W", 0);

3 v.createProperty("LCC", -1.0);

4 return;

5 }

6

7 /*

8 * Here , Interval Message Payload is of type Tuple4. It encapsulates four

fields :

9 * 1. Interval

10 * 2. Head Vertex of a Wedge : Type Long
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11 * 3. Center Vertex of a Wedge : Type Long

12 * 4. Tail Vertex of a Wedge : Type Long

13 *

14 * In order to access Head Vertex from message payload , we invoke _2()

method. Similarly , interval , center and tail can be accessed using

_1(), _3() and _4() resp.

15 */

16 void compute(Vertex v, Interval t, Map <Long , Tuple4 <Interval , Long ,

Long >[]> vState , Message[ ] msgs) {

17 Map <Long , Tuple4 <Interval , Long , Long >[]> wedgeMap;

18 if (getSuperstep () == 1) {

19 v.setState(v.interval , wedgeMap);

20 } else if (getSuperstep () == 2) {

21 for(Message m : msgs) {

22 v.createInEdge(m.value._1, m.value._2);

23 for(Pair <edgeInterval ,nbrID >: v.getOutEdges(m.value._1.start)){

24 if(! wedgeMap.contains(nbrID)) {

25 wedgeMap.put(new Tuple4 <>(edgeInterval , m.value._2, v.id,

nbrID));

26 } else {

27 Tuple4 <Interval , Long , Long >[] computedWedge =

wedgeMap.getValue(nbrID);

28 computedWedge.add(new Tuple4 <>(edgeInterval , m.value._2,

v.id , nbrID));

29 wedgeMap.update(nbrID , computedWedge);

30 }

31 }

32 }

33 v.setProperty("W", wedgeMap.size());

34 v.setState(v.interval , wedgeMap);

35 } else if (getSuperstep () == 3) {

36 for(Message m : msgs) {

37 Pair <edgeInterval , nbrID > edge

38 = v.getOutEdge(t, m.value_2);

39 if(edge!=null) {

40 if(! wedgeMap.contains(m.value_4)) {

41 wedgeMap.put(new Tuple4 <>(edgeInterval , m.value._2,

m.value_3 , m.value_4));

42 } else {

43 Tuple4 <Interval , Long , Long >[] computedWedge =

wedgeMap.getValue(m.value_4);

44 computedWedge.add(new Tuple4 <>(edgeInterval ,
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m.value._2, m.value_3 , m.value_4));

45 wedgeMap.update(nbrID , computedWedge);

46 }

47 }

48 }

49 } v.setState(v.interval , wedgeMap);

50 } else if (getSuperstep () == 4) {

51 long closedWedges = 0, TotalWedges= v.getProperty("W");

52 for(Message m : msgs)

53 closedWedges += 1;

54 if(TotalWedges >0)

55 v.setProperty("LCC", closedWedges/TotalWedges);

56 } else {

57 haltComputation ();

58 }

59 }

60

61 Message scatter(Edge e, Interval t, Map <Long , Tuple4 <Interval , Long ,

Long >[]> vState){

62 if(getSuperstep () == 1) {

63 int travelTime = e.getProp("travel -time");

64 return new Message(e, new Interval(t.start + travelTime , ∞),

65 new Tuple4 <>(t, e.getSRC (), -1, -1));

66 } else {

67 Tuple4 <Interval , Long , Long , Long >[] computedWedge =

vState.get(e.getDST ());

68 if(wedge !=null) {

69 for(Tuple4 <Interval , Long , Long , Long > wedge : computedWedge) {

70 sendMessage(e, wedge._1, wedge);

71 } return null;

72 }

73 }

74 }

Algorithm 5.12: Compute and Scatter for Time-Dependent Local Clustering Coefficient using

ICM
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Chapter 6

The Graphite Platform

Graphite 1 is our implementation of the proposed interval-centric compute model (ICM), built

as a layer on top of and with extensions to Apache Giraph 1.3.0, a popular Java-based open-

source distributed graph processing platform that implements the vertex-centric computing

model (VCM).

Interval Vertices are 
offloaded to HDFS 

through OutputFormat

Workers call 
compute() on partitioned 

and active Interval Vertices

Workers call 
scatter() on all updated 

Interval Vertices

Workers collect interval-
messages and wait at global

synchronization barrier

Interval Graph
loaded from HDFS

through InputFormat

New interval-
messages

All Data
Loaded

Interval Compute Phase Output PhaseInput Phase

All active intervals
computed

No new interval-
messages

All interval-
messages sent

TimeWarp

Figure 6.1: Graphite Job Lifecycle, extending from Apache Giraph [75]

1https://github.com/dream-lab/graphite
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6.1 Architecture

The Giraph Architecture consists of Workers that hold the partitioned vertices of the graph,

along with their adjacency list, and execute the user logic in a data-parallel and distributed

manner with one or more threads per worker. A Master is used for synchronizing the BSP

barrier at the end of each superstep, decides if the application has terminated, and initiates the

next superstep on the workers. This basic design is extended by Graphite and described in

more detail below.

6.1.1 Worker Design

Users define their temporal graph algorithm using the ICM primitives, and implement the

compute and scatter logic in Java using interfaces provided by Graphite. The Graphite

platform in turn orchestrates the execution of these functions as part of the compute method

of Giraph. This is illustrated in Fig. 6.1. Each worker determines the active vertices that have

received a message, loops through each of them, and invokes the user-defined logic on each

active partitioned state interval in it.

The compute logic operates on a vertex and its incoming messages, and can update the ver-

tex’s current state for an sub-interval contained during its lifespan. To ensure synchronization-

free parallel operation, Graphite temporally aligns and groups messages along maximal sub-

intervals for each interval-vertex, such that the intervals are disjoint. To find these sub-intervals,

Graphite makes use of time-warp (Section 4.3), whose implementation is described in the next

section. Once these sub-intervals have been identified, Graphite can invoke the compute func-

tion on them in a data-parallel manner 1. The prior state for the vertex sub-interval and the

grouped incoming messages for this sub-interval are passed as parameters to the function, and

the logic can update the state for that sub-interval.

When the compute logic returns, Graphite invokes the scatter logic for all sub-intervals for

that vertex whose state was updated, once for each out-going edge, in a data-parallel manner

(Section 4.2.2). The logic has read-only access to the associated interval state and to the edge

properties. For each invocation on a edge’s sub-interval, the scatter logic can return zero or

more interval messages to be sent to the target vertex. If it returns no messages, then this

invocation does not cause any messages to be sent; otherwise we send the messages to the

destination as a Giraph’s message and made it available at the start of the next superstep

to target vertex. Scatter for a sub-interval can be invoked concurrently with the compute for

another sub-interval of the same or for a different vertex, and/or with the scatter for other

1Parallelism is restricted by the available compute threads on a worker
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Aggregates Handled Time-Complexity
Basic [108] All O(n2)

Aggregation Tree [60] All O(n2)
Balanced Tree [79] Count/Sum/Average O(n log n)

Sort-Merge Aggregation [79] All O(n log n)
SB-Tree [52] All O(n log n)

Disjoint Interval Partitioning [16] All O(n log n)

Table 6.1: Comparison of Temporal Aggregation Algorithms (Graphite’s default algorithm
highlighted)

out-edges for the same or a different sub-interval. This allows computation to overlap with

communication.

6.1.2 Time-warp

Time-warp is a type of temporal aggregation. We implement it using a merge-sort algorithm [79]

(see Appendix A for the pseudo-code and detailed example). It incrementally computes a larger

aggregate by merging two smaller aggregates, with the final aggregate at the root. For m

input messages, its time-complexity is O(m logm) and space-complexity is O(m). Typically,

m = O(d · t) where d is the in-degree and t is the lifespan of the vertex. For algorithms like TC,

the size of each message can itself be d, increasing the space complexity.

6.1.2.1 Other Aggregation algorithms

A lot of work has been done on temporal aggregation algorithms which allow data to be grouped

along the time dimension [12]. The earliest work aimed at efficient processing of temporal aggre-

gates is by Tuma [108]. Key works in this direction include the aggregation tree algorithm [60],

SB-Tree [52] and the recently proposed Disjoint-Interval Partitioning [16]. We note that re-

search on temporal aggregation algorithms is orthogonal to our work and to leverage benefits

of on-going advancements, Graphite permits users to replace the default sort-merge aggre-

gation algorithm with a custom implementation by using the graphite.warpOperationClass

property.

6.1.3 Messaging, Global Co-ordination and Termination

During a superstep, interval-messages are serialized, batched and sent asynchronously using

communication threads which are always running in the background, concurrently, enabling

computation and communication to overlap. At the end of each superstep, workers wait for all

outgoing messages to be delivered before blocking on a global barrier. Global synchronization

is coordinated by the master using Apache ZooKeeper [47], as provided by Giraph. ZooKeeper
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supports high availability via use of quorum, where clients can access information from another

peer server if its first call fails. By default, Graphite uses an ensemble of 3 zookeeper servers.

Unlike Giraph, all vertices implicitly mark themselves as inactive at the end of each superstep

(see Sec. 6.3.5). The computation halts when all interval vertices are inactive and no messages

are in-transit, and otherwise the master instructs all workers to proceed to next superstep.

When the computation halts, the master may instruct each worker to save the state for its

portion of the interval graph to HDFS.

6.1.4 Master Compute

Just like in Giraph, MasterCompute is an optional stage that performs centralized single-

threaded computation in Graphite. The logic for this can be registered by the user with

the giraph.masterComputeClass property. MasterCompute is executed on the master once,

at the beginning of each superstep. Users can use this to change the computation classes to be

used for different phases during runtime, or perform some global computation whose outcome

is made available to all workers before the start of the next superstep. Additionally, Graphite

also retains the preSuperstep() and postSuperstep() functions of Giraph, which can be

used for executing user logic once, before or after all the computation completes for any (or all)

vertices in a partition.

6.1.5 Composability

Often graph analytics is part of a larger pipeline which consists of extracting graph from raw

data, followed and/or preceded by data wrangling, carrying out graph computation, and an-

alyzing the result. In contemporary graph processing systems, these pipelines are composed

using a combination of data-processing (e.g. Hadoop [26]) and graph-processing systems (e.g.

Giraph [1]), with data transfered between them using a distributed file system like HDFS. How-

ever, such pipelines are more complex and leads to inefficient performance due to large-scale

disk-based data movement across framework boundaries. Moreover, the phase-based algorithms

like Algo. 5.3 and Algo. 5.12, users are burdened with designing bespoke phase-switching mech-

anism using conditional statements on the supersteps count in MasterCompute. These also

restrict chaining of multiple existing temporal graph analytics. Further, users need to take care

to ensure compatibility between the output and input message types at phase boundaries.

We address these performance and usability short-comings by designing a pipeline com-

posability framework in Graphite that builds upon the basic compute and scatter func-

tions of ICM. Code is written as stages, which can be composed together to form a pipeline

(see Figure 6.2). Each stage is a ICM program, which may be configured to iterate for a
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Figure 6.2: Computation Pipeline

fixed number of supersteps (using Repeat(Stage userStage, int numOfSupersteps) ) or

until some user-specified convergence criteria is met (using RepeatUntil(Stage userStage,

BooleanCriteria converged) ). users implement the BooleanCriteria interface that exposes

two methods: get() and apply(). At the start of each superstep, the Master invokes get(),

which if returns true if the stage has completed and can be terminated, otherwise master in-

vokes next superstep of this stage. By default, all vertices are active at the start of a stage and

a stage terminates when no new messages are generated in a superstep. Like ICM, all vertices

voteToHalt() at the end of each superstep. Rather than pass explicit messages from one stage

to the next, the vertex state is carried over and acts as an implicit channel between stages. The

pipeline framework executes each stage linearly, in the order specified by the user. Currently,

we do not allow two stages to run concurrently.

Example Algorithm 6.1 shows the logic for a Pipeline Master that allows us to design SCC

in a more intuitive manner compared the the MasterCompute approach shown in Alg. 5.3. We

use Make Graph Symmetric stage to construct a transpose of the input graph, and Trimming

stage to identify vertices with only incoming or outgoing edges. Both Make Graph Symmetric

and Trimming are executed once. Next, in the Forward Traversal stage, each active interval

vertex assigns its own vertexID as its componentID for all active intervals and propagates it

along its out-edges. Additionally, such active vertices will invoke apply() method of the user-

specified BooleanCriteria areAllVerticesDeactivated to signal they are active. In subsequent

superteps, vertices update their own componentID with the smallest candidate componentID

they had seen so far for each interval partition. Forward Traversal stage continues propagating

the componentID until the vertices converge.

Finally, in Backward Traversal stage, every interval vertex whose componentID equals its
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vertexID, propagates its componentID along its in-edges (computed during Make Graph Symmetric

stage) and marks itself deactivated for the interval. All deactivated interval partitions will no

longer participate in future computations and will ignore all received messages. In subse-

quent supersteps, vertices which receive messages test if the received message equals its current

componentID and if so propagate it along their in-edges and deactivate themselves for the

interval. Backward Traversal stage converges when no new messages are generated. The

Pipeline Master now tests the convergence criteria provided by the user by invoking get() on

areAllVerticesDeactivated. If all vertices are marked deactivated, then SCC the algorithm

terminates, and otherwise Master schedules Forward Traversal stage for re-execution. Here,

the scatterDirection (line 17 and 38) variable indicates the direction (IN, OUT or BOTH)

along which scatter operates.

6.1.5.1 Summarize

Summarize logically encodes the two essential phases of data parallel applications; map and

reduce, and can be composed with other graph computation stages in a pipeline. The user-

defined map function is applied to each interval vertex object, yielding zero or more key-value

pairs, which are then reduced to one scalar per key using the user-defined reduce function.

Graphite automatically inserts a group-operation between map and reduce, which takes a

list of records as an input and creates a collection of values with same key. For any summa-

rize operation, there can be at-max as many parallel reducers as the number of workers. In

Section 7.9, we describe a computation pipeline which, identifies weakly-connected components

using an interval program and computes the number of distinct connected components for each

timepoint using summarize.

6.2 Implementation using Giraph

Besides these above design elements, Graphite largely reuses the existing capabilities of Gi-

raph, some of which we highlight below. The high level architecture is shown in Figure 6.3.

6.2.1 Resource Acquisition and Graph Loading

Graphite uses YARN [111], a cluster resource management service, to request allocation of

the machines for user application. The number of machines can be specified by the user using

workers property. One of these machines hosts the Giraph master. The master is not assigned

any part of the interval graph to process, but is responsible for global synchronization, error

handling and assigning partitions to the workers. By default, each worker is assigned as many

partitions as the the number of threads available to it for computation. However this can
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1

2 class SCCPipeline implements Pipeline {

3 BooleanCriteria areAllVerticesDeactivated;

4

5 SCCPipeline () {

6 return new Pipeline(

7 Repeat(Make_Graph_Symmetric , 1),

8 Repeat(Trimming , 1),

9 RepeatUntil(

10 new Pipeline(

11 RepeatUntilConvergence(Forward_Traversal),

12 RepeatUntilConvergence(Backward_Traversal)

13 ),

14 areAllVerticesDeactivated),

15 RepeatOnce(WriteOutputToDisk)

16 );

17 }

18 }

Algorithm 6.1: Pipeline Master Composition for Time-Independent SCC using ICM

altered using giraph.numComputeThreads property. If w is the number of workers and t the

number of compute threads available, we have the number of partitions as p = w×t, e.g., in our

experiments, we have 8 workers and 14 compute threads per worker, resulting in 112 partitions.

Interval vertices (and edges) of the input interval graph map to native vertices (and edges)

in Giraph, but include details of their lifespan. Giraph loads the interval vertices and all of

their out-going interval edges and associated time-varying properties from an input adjacency

list file present in HDFS [98]. Each worker loads HDFS blocks for the input file present in its

local machine into memory. Graphite partitions the interval vertices into specific partitions

depending on a partitioning function (refer sec. 6.2.3). This is performed in a separate pre-

processing supertep after the graph is loaded. Based on this, each worker transfers local interval

vertices and edges to their respective partitions present on various workers. This function also

makes it possible for a worker to later know which partition a given interval vertex belongs to

in order to send messages to the relevant worker hosting a vertex. The adjacency list loading

and interval vertex partitioning together form the load time for the graph.

6.2.2 Input and Output Format

There are many possible file formats for interval graphs, and graphs in-general, such as comma-

seperated values (CSV), tab-seperated values (TSV), GEXF [3], GML [4], GDF [2], DIMACS [51],

or stored as relations in a database [128, 74]. To avoid imposing a specific choice of input file

format, Graphite decouples the task of interpreting an input file from the task of graph
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1 class Make_Graph_Symmetric implements Stage {

2 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

3 for(Message m : msgs)

4 v.createInEdge(m.interval , m.value);

5 }

6 void scatter(Edge e, Interval t, long componentId) {

7 return new Message(e, t, componentId);

8 }

9 }

10 class Trimming implements Stage {

11 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

12 if(if(isActive(v, t) && (v.outEdgeCount == 0 || v.inEdgeCount == 0) )

13 deactivateInterval(v, t);

14 }

15 }

16 class Forward_Traversal implements Stage {

17 scatterDirection="OUT";

18 BooleanCriteria areAllVerticesDeactivated;

19 void init(Vertex v) {

20 if(isActive(v, t)) {

21 areAllVerticesDeactivated.apply(FALSE);

22 v.setState(v.interval , v.id);

23 } else { areAllVerticesDeactivated.apply(TRUE); }

24 }

25 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

26 if(isActive(v, t)) {

27 minComponentId = ∞;

28 for(Message m : msgs)

29 minComponentId = min(m.value , minComponentId);

30 if(minComponentId < componentId){ v.setState(t, minComponentId);}

31 }

32 }

33 void scatter(Edge e, Interval t, long componentId) {

34 return new Message(e, t, componentId);

35 }

36 }

37 class Backward_Traversal implements Stage {

38 scatterDirection="IN";

39 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

40 if(isActive(v, t)) {

41 if(componentId == v.id) {

42 deactivateInterval(v, t);

43 } else {

44 for(Message m : msgs) {

45 if(componentId == m.value)

46 deactivateInterval(v, t);

47 }

48 }

49 }

50

51 void scatter(Edge e, Interval t, long componentId) {

52 return new Message(e, t, componentId);

53 }

Algorithm 6.2: Reusable Computation Components/Stages52
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Figure 6.3: Architecture for Graphite using Giraph [75]

computation using various implementations of readers. Further, the vertex and edge states

after ICM computation can be generated in any arbitrary output format by the user by im-

plementing writer interfaces. Like Giraph, Graphite provides readers and writers for many

common file formats, with the ability for the users to over-ride them using the properties

giraph.VertexInputFormatClass and giraph.VertexOutputFormatClass.

6.2.3 Graph Partitioner

Graph partitioning is an essential pre-processing step for distributed graph computations, since

to perform computation over multiple machines in a cluster, the input graph first needs to be

partitioned by assigning vertices to individual machines. This can have a significant impact on

the performance and resource usage in the computation stage [113]. Assignment of an interval

vertex to a partition depends on a vertex partitioning function, and the default in Graphite is

the HashPartitionerFactory defined as hash(ID) mod N, which hashes a vertex ID to one of

N partitions. users can replace it by modifying the giraph.graphPartitionerFactoryClass

property. Although a random hash partitioner generates well-balanced workloads across ma-

chines, almost all neighbors of the interval vertices tend to be on remote machines. Hence
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most ICM messages are sent across the network rather than through in-memory data transfer

that is possible if vertices are collocated on the same worker. In Section 7.6, we show how

more sophisticated partitioning algorithms can help reduce the network communication costs

and overall execution time. Currently, Graphite only supports static allocation of vertices to

partitions – vertices once assigned to a partition cannot be migrated to a different partition.

However this can be relaxed in future.

By default, Partitions inside Graphite are stored using a map-based structure, which

allows parallel access to vertices, albeit with a higher memory overhead. Users can replace

this default data structure SimplePartition to a ByteArrayPartition class or a custom class

using giraph.partitionClass property.

6.2.4 Fault tolerance

Fault tolerance in Graphite is achieved through Giraph’s existing checkpointing mechanism.

Just like Giraph, Graphite can be configured to trigger a checkpoint after every n supersteps.

Graphite serializes and persists the dynamic state and message stores to durable storage

during a checkpoint, and uses it to recover from one or more worker failures. If a worker fails in

a superstep, the rollback and recovery will be done for all workers to the nearest prior superstep

at which a checkpoint was performed. In case of algorithms with multiple computation phases,

Graphite performs checkpointing at the global barriers between computation phases.

Users can modify the frequency of checkpointing by using giraph.checkpointFrequency

property. By default, this property is set to 0, which disables checkpointing.

6.3 Optimizations

We highlight a few optimizations used to improve Graphite’s performance for ICM algorithms.

6.3.1 Interval-Message Combiner

Combiners are a common feature in platforms like Giraph, MapReduce and Spark to reduce

network transfers between workers across iterations. We allow users to provide an optional in-

terval message combiner using the graphite.intervalMessageCombinerClass property, which

is an aggregation function over a set of messages received by a specific vertex at the start of a

superstep and having overlapping intervals. It reduces the different message values for a single

time-point into a single message value for that time-point. Graphite then coalesces adjacent

time-points back into intervals based on value-equality, and causes fewer interval messages to

be passed to the compute function of that vertex. This is called a receiver-side combiner. There

are no guarantees that the combiner will execute on the messages or the particular order in
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which the messages will be combine. So it is only suitable for commutative and associative

operations over message values, such as summing the rank values in PR or finding the smallest

travel-time for TMST.

Unlike Hadoop MapReduce, Giraph only supports a receiver-side combiner and not a sender-

side combiner. Such a combiner would execute over all messages generated to a target vertex

from all vertices present on a worker (machine) before the end of a superstep. While we did

implemented a sender-side combiner feature in Graphite, we did not observe any performance

improvements. Further, to combine messages at the sending worker, we need to store all

outgoing message in a list for each destination vertex and this increases the memory usage on

the sending worker. Also, messages are buffered twice, once in the outgoing messages list for

combining, and then in the message buffers before batching and network transmission. This

slows the rate at which buffers fill and are flushed. As a result, sender-side combiners are not

enabled [53].

6.3.2 Inline Warp Combiner

We also allow users to specify warp combiners that execute as part of the warp step before

compute, and after any receiver-side message combiners have executed. It applies the warp

combiner logic to the grouped and partitioned messages it generates for each sub-interval of the

vertex. This reduces the number of messages per partitioned vertex state to just 1 when calling

the compute function, and avoids a linear scan through the input messages. This is coupled

with the receiver-side message combiner that is applied before warp.

6.3.3 Warp Suppression

Interval-centric computing works best when the lifespan of entities are long, and with large

time overlaps across them. If the lifespan of vertices, edges and properties are small, there is

no shared compute and messaging to exploit. Yet, the platform overheads for ICM will apply.

Since warp causes the most overhead, we enable a feature to selectively disable the warp step if

more than a certain fraction of input messages to a vertex have a unit lifespan. This avoids the

warp costs and degenerates to a time-point centric execution model. While this causes more

calls to the compute function, this outstrips the cost of calling warp without its associated

benefits. The correctness is not affected. By default, warp suppression is enabled and can be

turned off by setting the graphite.warpSuppression property to 0.
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6.3.4 Variable-Integer Encoding

While Graphite uses 64-bit data structures for vertex IDs, in most cases the vertex ID have

a much smaller range than 264. To exploit this, we encode vertex IDs using a variable bit-

length encoding scheme. For each byte, we use the 7 least significant bits to encode the

value and the most significant bit to indicate if we need another byte to encode the resid-

ual value. Variable-integer encoding is enabled by default and can be disabled by setting

graphite.variableIntegerEncoding property to 0.

Messages in Graphite include an interval, with the start and end time-points. Given the

billions of messages transmitted for algorithms over large graphs, this adds to the network costs.

Since intervals may have a wide-range of durations depending on the temporal graph, we also

use variable-integer encoding to represent them. In the graphs used in our our experiments,

we observe that this optimization causes the overall message sizes to drop by 59–78%. Also,

unit-duration messages and those whose end time spans till ∞ are treated specially – we pass

just the start time point and a corresponding flag which is used to compute the 8-byte long

for the end time at the receiving end.

6.3.5 Implicit Vote-to-Halt at the End of Each Superstep

In Giraph, we need to loop through each and every vertex in the graph at the start of every

superstep to determine which vertices are active. Either this active flag should be set, or the

vertex should have received a message in order for a vertex’s compute function to be called.

However, by choosing to halt-to-halt the vertices by default in ICM at the end of every superstep,

we can avoid this full scan through the list of vertices in a partition to check if they are active

and instead just use the message receipt for the decision. In fact, most Giraph and VCM

algorithms over static graphs explicitly vote to halt after every superstep. Optionally, we also

allow users to explicitly mark a vertex to remain active by invoking the voteToRemainActive()

method.

6.4 Advantages of Architecting Graphite over Giraph

Giraph, on account of its popularity and broad adoption across industry and academia has

received significant research interest over the years. Researchers have studied run-time char-

acteristics (e.g. messaging and memory access pattern) of Giraph for a variety of algorithms

and have identified several performance bottlenecks, which are commonly attributed to imbal-

anced computation and communication. To this end, several platform enhancements have been

proposed and implemented for Giraph. Han and Daudjee [38] identified message staleness and
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frequent global synchronization barriers to be a performance overhead and proposed Barrierless

Asynchronous Parallel execution. Khayyat et al. [57] observed the need for run-time vertex mi-

gration to ensure balanced computation and communication. Their proposed approach, Mizan,

monitors run-time characteristics and using these measurements constructs a migration plan to

minimize imbalance across workers. Dindokar and Simmhan have designed runtime partition

migration using a static analysis of the graph algorithm [29]. Ching et al. [22] identified algo-

rithms having messaging patterns that can exceed available memory on destination vertex and

created superstep splitting technique, which splits a message heavy superstep across several

iterations. Liakos et al. [69] studied memory usage patterns in Giraph and proposed to replace

default in-memory adjacency list with compressed representations to reduce memory footprint.

Zhou et al. [129] propose online message computing, where incoming messages are consumed

in a streaming manner to reduce memory footprint. A number of VCM algorithms over static

graphs have also been implemented using Giraph.

Given this body of work, developing Graphite over Giraph allows us to leverage many of

these benefits, several of which can be applied transparently to Giraph without affecting the

correctness of Graphite. In Section 7.10 we discuss how two existing techniques, superstep

splitting and asynchronous processing, proposed in context of static graph processing can be

natively ported to Graphite.
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Chapter 7

Experimental Evaluation

In this chapter, we offer a detailed comparative evaluation of the intrinsic benefits of the ICM

model and various platform optimizations. No single prior study has examined these number

and variety of temporal graphs and algorithms.

7.1 Temporal Graph Datasets

We run experiments for a diverse set of 6 real-world graphs (Table 7.1) to rigorously study the

impact of their characteristics on the performance of the algorithms for Graphite and several

baseline platforms (Section 7.2). These graphs vary in the size, per snapshot and cumulatively

(Small: GPlus [34], USRN [27], Reddit [44, 71]; Large: MAG [30], Twitter [19], WebUK [13]);

lifetime of the temporal graph and entities (Short: GPlus; Long: MAG, Twitter; Mixed: Red-

dit, USRN, WebUK); diameter (Long: USRN; Short: rest); and degree distribution/domain

(Planar/Road: USRN; Powerlaw/Social: rest). One edge property is present and used by the

TD algorithms. None of the algorithms use vertex properties and is hence omitted. All graphs

are based on real topologies. We introduce structure variations for Twitter using Facebook’s

LinkBench [10] distribution 1, but the dynamism is real for the others. We use a distribution

from a UK road traffic dataset for the properties of USRN and use the LDBC [48] generator

for Twitter, but the property variations are native for the rest. These are described in detail

below:

7.1.1 Google Plus (GPlus)

Google Plus is a directed social network where vertices are users and edges are the follows

relationship between them. Each snapshot represents the network at the end of a particular

1https://github.com/facebookarchive/linkbench
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Table 7.1: Dataset Characteristics

|V| |E| |V| |E| |V| |E| ∑|V| ∑|E| V E Prop.
GPlus1 4 17M 225M 28.9M 462M 60M 493M 60M 462M 2.6 1 1
USRN2,3 96 24M 58M 24M 58M 1.2B 4.1B 24M 58M 96 96 4.82
Reddit4 121 280K 24M 9.1M 523M 60.4M 717M 64.6M 662M 6.6 1.22 1.12
MAG5 219 116M 1B 116M 1B 2.6B 11.6B 3.4B 13.1B 20.9 15.8 5.26
Twitter6 30 43.5M 2.1B 43.9M 2.1B 519M 26.3B 1.3B 60.1B 29.5 28.4 14.8
WebUK7 12 110M 3.9B 131M 5.5B 1.1B 34B 1.3B 45.3B 9.97 9.4 4.7
LDBC10 128 102M 1B 118M 1.4B -- -- -- -- 84 78 12.8

Graph
#Snap 
shots

Average LifespanLargest Snap Interval Transf. Multi-Snap.

1 http://home.engineering.iastate.edu/˜neilgong/gplus.html
2 http://users.diag.uniroma1.it/challenge9/download.shtml 3 http://trafficengland.com
4 http://cs.cornell.edu/˜jhessel/projectPages/redditHRC.html
5 http://openacademic.ai/oag 6 http://twitter.mpi-sws.org 7 http://law.di.unimi.it/datasets.php

month during July–October, 2011. The edge property weight (float) for GPlus is generated using

the Facebook distribution given in the LDBC Data Generator’s configuration1. Data generated

using LDBC mimics the cardinalities, correlations and distributions of real social networks.

Each snapshot is self-contained and no edge spans across snapshots. This means that each

snapshot requires distinct compute and no messages can be shared across snapshots. This forms

the best case for all baselines and is the worst case for Graphite.

7.1.2 Reddit

This is a temporal graph constructed from comments made by users on the Reddit social news

aggregation site during 2005–2015. Vertices are users and edges are comments made on a

user’s post by another user. These are aggregated on a monthly basis to generate an interval

graph. The time interval of an edge from one user to another ranges from the time of their

first comment to the time of their last comment. The edge property represents the number of

such interactions between them during a given month.

7.1.3 US Road Network (USRN)

This is the full road network of USA, where intersections and endpoints are represented by

vertices and the roads connecting them are undirected edges. Its large diameter (6262) results

in a large number of supersteps for traversal algorithms to complete. The topology of the graph

does not change. We synthetically sample edge properties that represent coarse-grained travel

1https://github.com/ldbc/ldbc graphalytics/blob/master/config-template/graphs/datagen-8 9-
fb.properties
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duration on each road from a distribution of real traffic flow from 2500 roads, provided by the

UK Highway Agency 1. We generate 96 snapshots, each representing the traffic during a 15 min

interval and for a 24-hour duration.

7.1.4 Microsoft Academic Graph (MAG)

This citation graph captures over 166 million papers published between the years 1800 and 2018

as vertices, and its directed edges represent the cites relationship between them i.e. a directed

edge is created from citing paper to cited paper. We have one snapshot per year, with each

vertex and its out-edges having a starting time-point as the year of publication and a fixed

ending time as 2018 – the last snapshot indicating the “present”. This is a monotonically

growing graph since all vertices and edges have the same, fixed ending time and are never

removed. In each snapshot, weight assigned to an edge is the weighted average of the citing

paper’s (source vertex’s) cumulative citation count till that snapshot.

7.1.5 Twitter

This is a directed social network generated from 30 snapshots crawled during September 2009,

where vertices are users and edges indicate the follows relationship, . It has a power-law degree

distribution with a few vertices having high in-edge degree. This is the only graph where real

dynamism in the topology is absent and instead we simulate it using the Facebook distribution

from LinkBench Distribution Generator 1. Starting from the original Twitter graph, LinkBench

adds and removes vertices with a probability of 0.72 and 0.28, and similarly, adds and removes

edges with a probability of 0.75 and 0.25, for a monthly vertex and edge churn of 4% and

12% respectively. The edge property weights for Twitter dataset is generated using a different

Facebook distribution LDBC Data Generator Config template2.

7.1.6 WebUK

This is a temporal graph generated from 12 monthly snapshots of the .uk web domain, crawled

between May, 2006 and May, 2007. The vertices are web pages and a directed edge connecting

two vertices represents presence of hyperlink from webpage represented by source to target. For

each snapshot, the weight property assigned to an edge is the normalized duration of association

(i.e. edgeLifespan/graphLifespan) times the in-degree of source vertex for that snapshot. If this

weight value does not vary for an edge across contiguous snapshots, the value is used for that

entire interval in the interval graph.

1http://www.trafficengland.com
2https://github.com/ldbc/ldbc graphalytics/blob/master/config-template/graphs/datagen-9 4-

fb.properties
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7.1.7 Discussion

These diverse and realistic characteristics of the interval graphs can affect performance of ICM

in different ways. High degree skews can cause performance bottlenecks at a handful of worker

machines, leading to stragglers. Large diameters can result in slow convergence. The different

rates of property changes allows us to study and compare Graphite’s performance under those

conditions. For Example, MAG allows us to showcase the static overheads of multi-snapshot

analysis and highlights the short-coming of the graph transformation baseline, which as seen in

Table 7.1 blows up the graph size by a factor of 13×.

7.2 Comparative Baseline Platforms

We compare ICM against four contemporary baseline abstractions that we adapt to temporal

graphs, and implement over Apache Giraph. This ensures that the primitives are the key

distinction and not the platform programming language or the execution engine.

7.2.1 Multi snapshot baseline (MSB) and Chlonos (CHL)

The Multi snapshot baseline (MSB) is used for Time Independent (TI) temporal graph algo-

rithms. Here, Giraph loads each snapshot sequentially from disk and executes the VCM logic

for the algorithm on each snapshot independently [78, 107].

Next, we enhance MSB and implement a variant (“clone”) of Chronos [40], which we call

Chlonos (CHL). This improves upon the simple MSB strategy by sharing messages that span

multiple adjacent snapshots. It loads a batch of snapshots into an in-memory layout that is

vectorized into a single structure. Its scatter logic identifies duplicate messages pushed by

the VCM compute logic to adjacent time-points of a sink vertex, and replaces them with a

single interval message, with the whole interval assigned as its validity, saving network time

and memory use. But, the compute logic is invoked for each snapshot independently. To ensure

lock-free execution on target vertex, based on message validity, payload is replicated for all valid

time-points (each time-point corresponds to a snapshot). Chlonos can operate on incremental

batches of snapshots, and each batch fits as many snapshots as possible in the distributed

memory to run the algorithms. It is also limited to expressing TI algorithms.

7.2.2 Transformed Graph Baseline (TGB)

The transformed graph baseline (TGB) converts the snapshots into a transformed graph (also

called a “static graph”) where the interval vertices are unrolled into vertex replicas, one each

for the number of incoming and outgoing edges at distinct time-points, and each being valid for

a single time-point [118]. This is discussed in more detail below. This can operate on both TI
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and Time Dependent (TD) temporal graph algorithms using a VCM logic that is similar to a

static graphs. However, its transformation logic is unique for each algorithm, which negates its

ability to serve as a unifying model. The edge-weights are used to capture algorithm-specific

properties, such as travel cost. The number of vertices and edges in the transformed graph is

bounded by O(k × |E|).
As discussed in [120], a Temporal Graph G = (V,E) can be transformed to a static graph G̃ =

(Ṽ , Ẽ) using a transformation process which consists of two phases, vertex creation and edge

creation. the example shown in Fig. 7.1(b) and Fig. 7.2 illustrates this graph transformation

approach for the temporal graph shown in Fig. 7.1(a) (same as Fig. 1.1(a)).

In the Vertex creation phase 1, each temporal vertex 〈vid, [ts, te)〉 ∈ V , creates static vertices

in Ṽ as follows:

1. Let Tin(vid) be the set of k distinct time-points at which edges from any in-neighbor

of temporal vertex vid are incident on vid. Formally stated, Tin(vid) = {t′ | t′ =

t + λ, t ∈ [ts, te) and ∃〈eid, vid′, vid, [ts, te)〉 ∈ E} and | Tin(vid) |= k. We create k

static vertices, one for each distinct time-point t ∈ Tin(vid), uniquely identified using a

composite identifier 〈vid, t〉 ∈ Ṽ . We denote the ordered list of these k static vertices as

Vin(vid) = {〈vid, t〉 | t ∈ Tin(vid)}. Elements in Vin(vid) are ordered in descending order

of their time-point, i.e., ∀〈vid, ti〉, 〈vid, ti〉 ∈ Vin(vid), 〈vid, ti〉 is ordered before 〈vid, tj〉 if

and only if ti > tj.

2. Let Tout(vid) be the set of k̂ distinct time-points at which a temporal edge originates from

a temporal vertex vid. Formally, Tout(vid) = {t′, t ∈ [ts, te) and ∃〈eid, vid, vid′, [ts, te)〉 ∈
E} and | Tout(vid) |= k̂. We create k̂ static vertices, one for each distinct time-point

t ∈ Tout(vid), uniquely identified using a composite identifier 〈vid, t〉 ∈ Ṽ . We denote

the ordered list of these k̂ static vertices as Vout(vid) = {〈vid, t〉 | t ∈ Tout(vid)}. Like

Vin(vid), elements in Vout(vid) are also ordered in descending order of their time-point.

In the Edge creation phase 1, for each temporal vertex 〈vid, [ts, te)〉 ∈ V , we create static

edges in Ẽ as follows:

1. Using Vin(vid) and Vout(vid) computed in the vertex creation phase, we now create a

directed static edge from the static vertex 〈vid, tin〉 ∈ Vin(vid) to 〈vid, tout〉 ∈ Vout(vid),

where tout = min({t : 〈vid, t〉 ∈ Vout(vid), t > tin}), and no other static edge from any

other static vertex 〈vid, t′in〉 ∈ Vin(vid) to 〈vid, tout〉 ∈ Vout(vid) has been created. Such a

1γ and λ are algorithm-specific parameters which may be user-defined constants or derived from graph.
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static edge 〈vidtin , 〈vid, tin〉, 〈vid, tout〉〉 ∈ Ẽ is uniquely identified by vidtin and its weight

is set to γ.

2. Let Vin(vid) = {〈vid, t1〉, 〈vid, t2〉, ..., 〈vid, tk〉}, k < te. For all 1 ≤ i < k, we create a

directed static edge from vertex 〈vid, ti+1〉 ∈ Vin(vid) to 〈vid, ti〉 ∈ Vin(vid). Each such

static edge 〈vidti+1
, 〈vid, ti+1〉, 〈vid, ti〉〉 ∈ Ẽ is uniquely identified by vidti+1

and its weight

is set to γ. Static Edges for Vout(vid) are created similarly, but is omitted from discussion

for brevity.

3. For each temporal edge 〈eid, vidi, vidj, [ts, te)〉 ∈ E, a directed static edge is created

∀t ∈ [ts, te) from vertex 〈vidi, t〉 ∈ Ṽ to 〈vidj, t + λ〉 ∈ Ṽ . Each such static edge

〈eidt, 〈vidi, t〉, 〈vidj, t + λ〉〉 ∈ Ẽ is uniquely identified by eidt and all property labels

and values associated with time-point t for temporal edge eid is copied over to static edge

eidt.

Once the transformed (static) graph is created, design the temporal algorithm just by by

executing the non-temporal VCM logic on it. For Example, to compute the time-dependent

single source shortest path on a transformed graph G shown in Fig. 7.2c from the source vertex

A to all temporally reachable vertices in interval graph G, we augment the transformed graph

G to G̃ (shown Fig. 7.2d) by creating a vertex A′ ∈ G̃ and a directed edge from A′ to each

vertex 〈A, t〉 ∈ Vout(A), Vout(A) ∈ G with weight 0. Then, we run static single-source shortest

path algorithm on augmented graph G̃ from source vertex A′. The path with the least distance

among the computed shortest path from A′ to each 〈A, t〉 ∈ Vin(A) is the time-dependent

shortest path from A to vertex v in interval graph G.

We evaluate TGB only for TD algorithms. While it is possible to use it for TI algorithms, its

performance and memory use is much worse than the MSB and CHL baselines discussed above

for the TI algorithms, as shown in Figure 7.3 for two graphs and the four TI algorithms. E.g.,

when using TGB, GPlus was 7–16% slower that MSB, while it ran out of memory for MAG.

The higher memory footprint for TGB can be accounted for by the much larger transformed

graph and the associated state it operates on.

7.2.3 GoFFish-TS (GOF)

GoFFish-TS (GOF) [99] models a temporal graph as a sequence of snapshots. Besides support

for sending messages to neighboring vertices in the same snapshot, GOF allows sending messages

from a vertex in a snapshot to itself at a future snapshot by writing them to disk. However,

the execution of the VCM logic processes vertices of a single snapshot at a time. An outer loop

(referred as a time-step in [99]) over the snapshots delivers (and retrieves) temporal messages to
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Figure 7.1: Phase-1 of Graph Transformation (γ = 0 and λ = 1)

(and for) future snapshots from disk, and an inner loop of supersteps operates on one snapshot

using VCM.

Our implementation uses the output state produced by snapshot si, as an input to the

computation of next snapshot si+1 , following the sequentially time-dependent pattern. Addi-

tionally, all temporal messages received for snapshot si+1 from any prior snapshots are made

available to target vertices in the first superstep. This is illustrated in Fig. 7.4. We limit an

evaluation of GOF to just TD algorithms as it degenerates to MSB for TI algorithms.

7.2.4 Other Baseline Platforms Considered

We have also evaluated other baseline approaches like Apache Spark’s GraphX [35] for TI and

TD algorithms, and Tink [70] for TD algorithms only. They are based on alternative execution

platforms, GraphX on Apache Spark [125] and Tink on Apache Flink [18]. However, their
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Figure 7.2: Phase-2 of Graph Transformation (γ = 0 and λ = 1)

performance was much worse than ICM or the other baselines we have implemented over Giraph,

as shown in Fig. 7.5 for GraphX on TI and TD algorithms for 3 graphs. E.g., for USRN, Tink
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Figure 7.3: Makespan for 4 TI algorithms using TGB and MSB baseline implemented in Giraph
for GPlus (left) and MAG (right)

took 4.2× (not shown) longer compared to TGB and 21.5× longer than Graphite for FAST,

while GraphX took 3× longer compared to TGB and 9.5× longer compared to Graphite. For

Twitter, Tink ran out of memory, while GraphX took 2.3× and 43× longer compared to TGB

and Graphite respectively. For MAG, both Tink and GraphX run out of memory. Further,

using Giraph as the common execution platforms for ICM and the baselines allows us to focus

on the performance of the programming primitives and conceptual approach rather the software

implementation or execution engine. Hence, we exclude these other less performant systems

from further evaluation.

7.3 System Setup

We run the experiments on a 10-node commodity cluster. Each node has one 8-core (16 Hyper-

Thread) Intel Xeon E5-2620 v4 CPU @ 2.1 GHz, 64 GB of RAM, 2 TB of HDD, and connected

through 1 Gigabit Ethernet. Each node runs CentOS 7.5 with Java 8, Apache Hadoop 3.1.1

and Apache Giraph 1.3, and is configured with 1 Giraph worker JVM with 14 threads each

and 60 GB heap space. 2 HyperThreads and 4 GB of RAM is reserved for opersting system.

Except for weak scaling, we use 8 nodes for all other experiments. The algorithms are run from

a cold cache state. We use the default hash partitioner of Giraph to partition the graphs, and
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we disable its check-pointing and out-of-core computation. Graphs are loaded from HDFS.

7.4 Metrics Reported

We report the makespan as the wall-clock time from the first user superstep, till the end of

the last user superstep. This includes the cumulative compute+ time, which is the time for the

compute (and scatter) calls overlapping with the messaging and barrier synchronization, and

the exclusive messaging time after compute is done and only messages are being transmitted

in a superstep. For fairness to the baselines, graph loading time is reported separately. We also

report the total number of calls to the user’s compute logic and the messages sent.
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Figure 7.5: TI (left) and TD (right) algorithm baselines implemented using Apache Spark’s
GraphX [35] API and Apache Giraph [1]
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Table 7.2: Ratio of the makespan of baseline platforms over Graphite, averaged for TI and
TD algorithms. 1× means same performance and > 1× means we are better. Italics indicate
that some algorithms Did Not Finish (DNF) for that graph and platform. DNL indicates that
the input graph Did Not Load due to memory pressure.

GPlus Reddit USRN Twitter MAG WebUK
MSB 0.95 1.14 0.97 24.79 12.99 5.80
Chlonos 0.96 1.08 0.98 13.29 10.89 6.27
TGB 0.95 1.13 2.32 19.90 DNL DNL
GoFFish 0.96 1.05 6.49 6.75 4.60 3.71

TI
 A

lg
TD

 A
lg

7.5 Analysis

Table 7.2 summarizes the average speedup (n×) Graphite achieves across TI and TD algo-

rithms, relative to other platforms for different graphs. DNL and DNF indicate that a platform

Did Not Load the graph, or Finish the computation due to memory overflow. Fig. 7.6 plots

the makespan for each algorithm (left Y axis) running on ICM and the baselines for the dif-

ferent graphs, along with the number of compute calls and messages sent (right Y axis). The

makespan is further split into the total time spent on the compute calls interleaved with mes-

saging (compute+) and for the exclusive messaging time after all compute calls are done in a

superstep. If substantial, the total time spent for the barrier synchronization between super-

steps or JVM garbage collection (GC) is indicated separately from the compute+ time they

are usually part of. The TD algorithms run on ICM (indigo bar color), Chlonos (crimson) and

MSB (magenta), while the TI algorithms run on ICM (indigo), GoFFish (gold) and TGB (teal);

EAT and FAST are omitted in Fig. 7.6 for brevity. They perform similar to SSSP.

As Table 7.2 shows, Graphite substantially outperforms all platforms for most graphs by

2.32–24.79×, and is comparable even for graphs that form the worst case for it. These are based

on the inherent characteristics of the ICM primitives rather than engineering artifacts. We also

weakly scale. These outcomes are discussed below.

7.5.1 All platforms have conceptually equivalent outcomes

As expected, all platforms produce identical results for all the algorithms and graphs. Further,

the programming models produce conceptually equivalent execution behavior as well, but with

different performance trade-offs. This is apparent when we examine GPlus (Fig. 7.6, (a))

which has unit-length edge intervals – all platforms degenerate to operating on each snapshot

independently as edges do not span across. Here, all platforms have an identical count of
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Figure 7.6: Makespan and the count of compute calls and messages sent for the 4 TI and 8 TD
algorithms. Barrier & GC time splits for makespan are shown only if large. Note the different
scaling on the Y axis. Continued...

compute calls and messages for an algorithm on a graph. Also, for each algorithm on a graph,

MSB and Chlonos have the same number of compute calls; ICM and Chlonos have the same

number of messages if the former can fit all snapshots of the graph in a single batch (GPlus,

Reddit, USRN); ICM and GoFFish have identical number of compute calls if properties change

with every snapshot; and TGB and GoFFish have identical number of messages and compute
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Figure 7.6: continued...

calls, if the replica vertex state transfer messages and calls for TGB are ignored.

Compute calls and message counts are intrinsic to the programming model, as opposed to

execution times that may depend on the platform and system at runtime. Matching these

across billions of calls and messages helps assert that we are comparing the primitives and not

just the platforms.
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Figure 7.6: continued...

7.5.2 ICM primitives cause better Graphite performance

ICM reduces the count of compute calls and messages sent for different algorithms and graphs, as

we show later. These intrinsic improvements due to the primitives leads to better performance

by Graphite. All platforms are implemented using Giraph. Since the time spent in the

compute calls and messaging form the bulk of the makespan for all platforms, we correlate these

counts against the compute+ and messaging times using the scatter-plot in Fig. 7.7. There are

72



107 108 109 1010 1011

#Compute Calls

100

101

102

103

104

105

Co
m

pu
te

+ 
Ti

m
e 

(s
ec

on
ds

)

R2 = 0.80

ICM
CHL
MSB
GOF
TGB

BFS
WCC

SCC
PR

SSSP
EAT

FAST
LD

TMST
RH

TC
LCC

BFS
WCC

SCC
PR

SSSP
EAT

FAST
LD

TMST
RH

TC
LCC

(a) Compute Calls v. Compute+ Time

107 108 109 1010 1011 1012

#Messages Sent

100

101

102

103

104

105

Ex
clu

siv
e 

M
es

sa
gi

ng
 T

im
e 

(s
ec

on
ds

)

R2 = 0.95

ICM
CHL
MSB
GOF
TGB

BFS
WCC

SCC
PR

SSSP
EAT

FAST
LD

TMST
RH

TC
LCC

BFS
WCC

SCC
PR

SSSP
EAT

FAST
LD

TMST
RH

TC
LCC

(b) Messages v. Messaging Time

Figure 7.7: Log-Log Scatter plot of count of compute calls and messages, and their time con-
tribution to the makespan.
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206 data points in each plot. We see a high correlation for both these factors, with R2 = 0.80

for the compute+ and R2 = 0.95 for messaging – the former is smaller since compute+ includes

some interleaved messaging as well. This establishes that the performance of the platforms are

consistent with the behavior of their primitives, and benefits seen for Graphite are due to

ICM and not better engineering.

7.5.3 ICM out-performs for graphs with longer lifespans

The benefits of ICM come from sharing compute and messages across multiple time-points.

This is limited by the lifespan of the graph entities, as only temporally contiguous vertices can

share compute calls with partitioned states, and neighboring vertices can share messages along

their edge lifespans. The lifespan for the interval graph w interval vertex w adjacent edges

w edge properties. So the benefits of ICM are constrained by the smallest of these. Our TI

algorithms do not use edge properties and are affected by the edge lifespan. TD algorithms use

edge properties and are limited by its lifespan.

Twitter and MAG have the longest average lifespans (Table 7.1). For Twitter, the edge

lifespan is 28.4 and almost spans the entire graph lifespan. Graphite is 24.1–26.3× faster for

TI algorithms than MSB. This is equally due to a drop in the number of compute calls by ≈ 27×
and in messages by ≈ 28×, compared to MSB. Chlonos calls compute on each time-point like

MSB, but can share messages across intervals within a single batch. Due to the large size of

Twitter, Chlonos can fit only 6 snapshots in memory and creates 5 batches. Graphite takes

93% less time than Chlonos – largely due to 27× fewer compute calls that reduces makespan

by 79%. While Chlonos sends fewer messages than MSB, it still sends ≈ 4.5× more messages

than ICM due to the 5 batches.

Twitter’s average edge property lifespan is 14.8 – half of its edge lifespan. However,

Graphite is 19.1–20.3× faster than TGB, with a 95% smaller makespan, for the TD al-

gorithms. Besides an 8× drop in messages and 10.5× drop in compute calls, there are two

other factors at play. One, despite hash-based vertex partitioning, 70% of the messages are for

4 of the 8 graph partitions. This network bottleneck causes a higher messaging time for TGB.

Two, the larger size of the Twitter transformed graph causes memory pressure and triggers the

JVM GC, causing Graphite to have a 40% lower makespan. This is discussed in Sec. 7.5.4.

Graphite is 2.98–8.2× faster than GoFFish, mainly due to an 8× drop in the message count,

and partly due to a 6× drop in compute calls. Like TGB, GoFFish does not share compute or

messages across intervals.

Also, ICM is faster for TI (≈ 12×) and TD (≈ 4.6×) algorithms for MAG due to fewer

compute calls and messages, which correlate with its edge (≈ 15.8×) and property (≈ 5.3×)
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lifespans.

7.5.4 ICM out-performs for large graphs

ICM offers several benefits for temporal graphs with large sizes and long lifespans, but due to

complementary reasons from above. Its interval graph model that is loaded and retained in dis-

tributed memory is more compact than the transformed graph of TGB (Table 7.1, Fig. 7.8(a)).

E.g., the transformed graph for MAG and WebUK cannot load into 480 GB of distributed

memory. They need 604 GB and 684 GB of memory just to load the graph, compared to just

130 GB and 183 GB for our interval graph. Besides memory pressure, this also increases the

number of messages and compute calls performed in TGB to share state between replica ver-

tices, e.g., by 50% on Twitter. While these are more light-weight than the application compute

calls and messages, they do pose a noticeable overhead.

Large graphs use more memory and create billions of message objects. This triggers the

JVM’s GC; we use the G1 GC that is efficient for large heap sizes. E.g., for Twitter, TGB calls

GC 33 times for SSSP and this takes ≈ 32% of its total makespan, compared to 6 calls to the

GC for ICM that account for 5% of its makespan. For WebUK, calls to GC make up ≈ 20% of

ICM’s makespan for TD algorithms, limiting its improvements over other platforms. GC calls

are fewer for GoFFish and MSB that operate on just one snapshot at a time, and it depends

on the batch size for Chlonos. E.g., Chlonos is slower than MSB only for WebUK due to GC

overheads on batches of 2 snapshots, which outstrips its message sharing benefits. However,

often the compute times dominate GC time. E.g., for MAG, ICM spends 27–163 seconds on

GC for TI algorithms, which is more than Twitter’s 11–42 seconds, but forms just 3–6% of the

overall makespan.

While MSB, Chlonos and GoFFish relieve memory pressure by operating on one or a batch of

snapshots, their snapshot data size on disk is larger than ICM. Fig. 7.8(a) shows the in-memory

size of the interval/transformed graph (ICM, TGB) and largest snapshot/batch (MSB, Chlonos,

TGB) on loading. TGB has the largest size followed by Chlonos, ICM, GoFFish and MSB.

While these result in disk and network I/O load times from HDFS for ICM and TGB, these

times accumulate across different snapshots/batches for MSB, Chlonos and GoFFish. E.g., for

MAG, these cause an additional 24 secs (Graphite), 2682 secs (MSB), 138 secs (Chlonos) and

2931 secs (GoFFish); TGB did not finish, but took 103 secs on a larger cluster. These times are

substantial, but not included when we report the makespan out of fairness to other platforms.

Lastly, using warp combiner reduces a pass by the warp and another by the compute on

the input messages into a single pass that does both. All our algorithms except LCC and TC

are commutative and associative, and define combiners. This benefits large graphs with many
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Figure 7.8: Graphite’s memory footprint on graph load, and benefits from Warp optimiza-
tions.

messages received per interval vertex. Fig. 7.8(b) shows the benefits of using the combiner in

Graphite for MAG, relative to disabling it. The compute time drops by 17–25% across all

algorithms, which lowers makespan by 1.2–1.5×. A 16–27% drop in compute time is seen for

WebUK. This feature is enabled for all experiments.
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7.5.5 ICM limits downsides, and is competitive even for short-lifespan

graphs

There is limited or no benefit from ICM for graphs with unit or small lifespan of entities,

like GPlus and Reddit, since we cannot share compute or messaging. However, ICM and

warp introduce overheads to the Graphite platform relative to the stock Giraph used by the

baselines. Our automatic warp suppression mitigates this. Here, messages do not pass through

the warp if the number of unit-length messages to an interval-vertex is above a threshold (default

70%) in a superstep. Its benefits are evident in Fig. 7.8(c) for GPlus, which has unit-length

edges and is the worst-case for ICM. The makespan reduces by 25–40% with this feature, and

we are only marginally slower by ≈ 7% (excluding load times) compared to the other baselines

(Fig. 7.6(a)). This is both due to avoiding warp and reduced messaging. These benefits are

also seen for Reddit, where 96% of edges have unit lifespans and yet Graphite manages to

out-perform the other platforms by ≈ 14%.

Another optimization for short-lifespan graphs replaces the pair of start and end time-points

for a unit-length interval with just one value. This saves 8 bytes per message, which adds up

for ≈ 5B peak messages sent for GPlus and Reddit.

7.5.6 ICM benefits graphs with large diameters, and is competitive

for non-temporal structures

Graphs like USRN have no structural changes, and only properties change. As a manual

optimization, developers may instruct MSB and Chlonos to just operate on a single snapshot

and reuse its results for the TI algorithms. ICM operates on the interval graph, with vertex

and edge lifespans matching the graph’s lifespan. It naturally sets the message intervals to

match this, and automatically garners similar benefits for the TI algorithms. So Graphite’s

makespan is comparable to these platforms (despite omitting load times). MSB and Chlonos

cannot benefit even if there is a small change in the topology, such as for Reddit. TD algorithms

use edge properties, and do not benefit from the static topology of USRN as its edge properties

vary.

ICM offers some benefits due to the large diameter of 6262 for USRN. The superstep count

is proportional to the diameter for traversal algorithms, while PR, TC, and LCC have fixed

superstep counts of 10, 3, and 4 respectively. The total barrier synchronization time is separately

shown for USRN (Fig. 7.6(c)). While Giraph spends ≈ 40ms on a barrier, this adds up to

dominate the makespan for all platforms. This is worse for TD algorithms as they multiply

over snapshots for GoFFish. The diameter of the transformed graph is also greater than or
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equal to the interval graph. TGB takes slightly more barrier time than ICM.

7.5.7 ICM exhibits weak scaling
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Figure 7.9: Weak Scaling of Graphite for all algorithms on synthetic graphs, using n =
1, 2, 4, 8 and 10 machines (‘nM’ shown on X axis). Each machine holds ≈ 10M vertices,
≈ 100M edges. Left Y axis reports the makespan (bars), while right Y axis shows the scaling
efficiency relative to a single machine (triangles) – 100% indicates perfect linear scaling.

Weak scaling is a common scalability metric for Big Data platforms and distributed systems,

which follows Gustafson’s Law [37]. An ideal weak scaling means that the time taken for n items

with m machines is the same as x·n items with x·m machines, i.e., the makespan stays constant

as the input and the resources increase proportionally. We perform weak scaling experiments

for Graphite by increasing the interval graph size and the number of machines. We generate
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TI Algo. ICM CHL MSB TD Algo. ICM GOF Pre‐Proc Algo Total

BFS 24 34 21 SSST 29 40 44 27 71

WCC 19 28 16 EAT 27 37 40 25 65

SCC 114 131 111 FAST 30 39 42 25 67

PR 26 36 23 LD 33 45 45 27 72

TMST 27 39 42 24 66

RH 25 35 40 23 63

TC 41 56 44 36 80

LCC 80 95 44 73 117

TGB

Figure 7.10: Number of lines of Java user code for all algorithms using ICM and the baselines

a synthetic graph using LDBC’s Facebook degree distribution [48] , and perturb its structure

over 128 time-points using Facebook’s LinkBench distributions [10]. The largest snapshot for a

graph has m×10M vertices and m×100M edges, for m = {1, 2, 4, 8, 10} machines (Table 7.1).

In Fig. 7.9, Graphite exhibits near ideal weak scaling, with the makespan staying almost

constant as the machine count increases, with a fixed load per machine. The scaling efficiency

is 95–106%, and indicates that we can scale well to even larger graphs.

7.5.8 ICM algorithms are concise

Figure 7.10 reports the number of lines of code (LoC) written by the algorithm designer, for the

10 algorithms using ICM and the four baselines. For TGB, there is substantial pre-processing

involved and so we separate it out from the core algorithm.

The LoC for Graphite is 15–47% fewer compared to Chlonos, 19–44% fewer than GoFFish,

and 46–152% fewer than TGB. Our LoC is marginally higher than MSB, by 3–19% (exactly 3

lines). These 3 additional lines in TI algorithms are ICM API calls. The 4 TI algorithms take

19–114 LoC using ICM, while the 8 TD algorithms take 27–80 LoC.

7.6 Effect of Partitioning Quality

We now investigate the effect of partitioning on performance of Graphite. We compare

three simple partitioning strategies: Random Hash Partitioning (HASH), which is the default,

and partitions generated by METIS for condensed graph1 with unweighted edges (UW), and

condensed graph with weighted edges (W) For weighted graph, edge lifespan is used as edge

weight, while for unweighted graph, the weight is always set to 1. Note that condensed graph is

1All unique vertices and edges from all snapshot are folded into a single static-graph. Edge properties (if
any) are ignored.
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Figure 7.11: Comparing the performance of ICM using different partitioning strategies: Hash,
METIS with Un-Weighted Edges (UW) and METIS with Weighted Edges (W)

used only for generating partition mapping and not for actual graph computation. METIS [54]

attempts to reduce the total weight of edge cuts between different partitions, and balance the

number of vertices in each partition. The former helps reduce communication costs between

machines, while the latter help balance the compute load on each machine. This partitioning

is done offline, before graph loading.

As we see from Figure 7.11, the choice of partitioning strategy has a significant effect on

communication cost. METIS-based partitioning has uniformly lower communication costs and
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Figure 7.12: Makespan time for TC and LCC algorithms with superstep splitting enabled.
(ICM-SS : ICM-Superstep-Splitting and ICM-OOC : ICM-Out-of-Core )

overall makespan compare to the default hash partitioning. The weighted edge partitioning

performs better than unweighted edges. The benefits of weighing are higher for for graphs with

non-uniform vertex and edge lifespans (e.g., MAG), but diminished for graphs with uniform

lifespans (e.g. TWITTER).

However, METIS requires that the number of partitions be known in advance and the

partitioning is done offline, while hash partitioning is done online, during graph loading time.

Also, others have shown that no single partitioning strategy is likely to be the best fit for

all situations for non-temporal graphs [112] and high-performance temporal graph analytics

systems should support multiple partitioning strategies. We need to validate this in detail for

temporal graphs as part of future work.

7.7 Superstep Splitting

One of the benefits of designing Graphite using Giraph is our ability to leverage other advances

to VCM and Giraph. One such technique is called Superstep Splitting, as discussed in [22]. This

is beneficial for large graphs that generate a lot of messages in a superstep and can overwhelm

the available distributed memory capacity of the workers that have to receive and buffer all
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these messages before the next superstep starts. Instead, each superstep is split into multiple

sub-iterations, with messages being sent to only a specific subset of vertices participating in

that sub-iteration. The vertices receiving a message will apply their receiver-side combiner to

reduce these messages into one after that sub-iteration. Once all messages for the superstep

have been delivered and incrementally combined, the compute is called. For superstep splitting

to be applicable, a receiver-side combiner needs to be defined, i.e., the compute logic must be

commutative and associative.

We extend ICM to permit superstep splitting. Here, that the master computation will run

the same superstep logic for a fixed number of sub-iterations. During a sub-iteration, every

vertex generating a message uses a hash function that decides if the destination vertex ID for

the message is participating in this sub-iteration, and only sends it the message if it is. This

way, O(M) cumulative messages that were previously buffered at the receiving vertices now

reduces to O(
M

I
) messages being buffered over I iterations, and being incrementally combined

into 1 message after each sub-iteration. However, this also increases the number of times the

compute function is called, from O(C) to O(C × I).

Figure 7.12 compares the performance of the default ICM, against superstep splitting (ICM-

SS) and also the out of core feature of Giraph (ICM-OOC). In the latter, messages that are

received and overflow the memory are pushed to disk, and then incrementally loaded when

the compute function executes in the next superstep. As we see from the plots, ICM-SS takes

marginally more time than ICM, and this is due to the larger computation time from the

extra compute function calls. However, ICM-SS is able to reduce the garbage collection time

substantially since the number of objects allocated and deallocated for the millions of messages

per superstep has now reduced substantially per sub-iteration.

More so, using ICM-SS allows us to compute TC and LCC algorithms for the large WEBUK

graph without resulting in out-of-memory as was seen in ICM that did not finish (DNF).

This ability to scale to larger graphs by reducing the runtime memory pressure from buffering

messages is the key benefit of superstep splitting. Further, we also see that ICM-SS is ≈ 4×
faster than ICM-OOC by avoiding the overheads of object de/serialization and disk I/O.

7.8 Relaxing Synchronous Barrier

Vertex centric programs can be executed using two types of iterative models of computation.

The synchronous (or BSP) model guarantees that processing in current superstep is only based

on the vertex state computed in and the messages received from the previous superstep. This

allows algorithms to be easily implemented and reasoned about. Pregel, Giraph, Blogel, GoFF-

ish and Graphite are examples of frameworks which make use of the synchronous model. On
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Figure 7.13: Makespan time for Asynchronous Computation Model

the other hand, the asynchronous model [38] permits processing in a superstep to be based

upon the vertex state and messages from the previous as well as the current superstep, i.e.,

vertices that receive a message from other vertices in the current superstep need not wait for a

barrier synchronization before they can start processing those received messages. This allows

vertices to make faster progress by consuming the most recent messages received, and reduces

the penalties imposed by straggler workers during global synchronization.

We adopt the Barrierless Asynchronous Processing (BAP) model, as described for Gi-

raph [38], for Graphite and compare the performance of the BSP (ICM-Sync) and BAP

(ICM-ASync) models of computing for ICM. Figure 7.13 compares these performances of three

algorithms for USRN, which has a large diameter of 6262 and hence takes that many supersteps

for traversal algorithms, and for Twitter.We see that ICM-Async offers substantial benefits for

the traversal algorithms (BFS, WCC) on USRN, by sharply reducing the cost of barrier syn-

chronization. The benefits are muted for the Twitter graph with a smaller diameter, and for

non-traversal algorithms like PR. In these cases, the algorithms may effectively complete execu-

tion within a single superstep by consuming messages as they receive it. However, ICM-Async

does have a higher memory footprint (≈ 1.3× for USRN and ≈ 1.6× for Twitter Graph) due

to buffering more messages in a single superstep.
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7.9 Composability

We compose a computation pipeline using Graphite’s composability feature to implement

a WCC application to count the number of weakly-connected components. It first runs the

time-independent WCC on an input temporal graph as the first stage using the ICM model

to identify the component IDs for each interval vertex (Algorithm 7.1). This is followed by a

summarize stage that finds the number of distinct connected components for each time-point

defined as a Map and a Reduce function. The Map operator emits the component ID for

each time-point in a vertex’s lifetime and the reduce function counts the number of distinct

component IDs for each emitted time-point.

Figure 7.14 shows the makespan time this composed Algorithm 7.1 in Graphite (ICM-

CC), and compares it with running WCC in Graphite followed by an explicit MapReduce

job using Spark to perform the count of the number of components (ICM+MR) with data

being exchanged over HDFS. The latter is ≈ 20% slower than the unified composition within

Graphite, caused by the additional disk I/O and replication overheads of writing/reading the

intermediate output between Graphite and Spark in HDFS.

In summary, Composability enables us to stay within a single framework throughout the

analytics process, eliminating the need to write connectors to move data between frameworks

(e.g. Graphite and Hadoop) and reducing expensive data movement.
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1 class WCCPipeline implements Pipeline {

2 WCCPipeline () {

3 return new Pipeline(

4 RepeatUntilConvergence(WCC),

5 countDistinctComponents ,

6 RepeatOnce(WriteOutputToDisk)

7 );

8 }

9 }

10

11 class WCC implements Stage {

12 void compute(Vertex v, Interval t, long componentId , Message[ ] msgs) {

13 if(getSuperstep () == 1) {

14 v.setState(v.interval , v.id);

15 return;

16 }

17 minComponentId = ∞;

18 for(Message m : msgs) {

19 minComponentId = min(m.value , minComponentId);

20 }

21 if(minComponentId < componentId) { v.setState(t, minComponentId); }

22 }

23

24 Message [] scatter(Edge e, Interval t, long componentId){

25 return new Message(e, t, componentId);

26 }

27 }

28

29 class countDistinctComponents implements Summarize {

30 Iterator <Pair <Long , Long >> map(Vertex v) {

31 Collection <Pair <Long , Long >> tuples;

32 for(long timepoint : v.interval) {

33 tuples.add(new Pair <Long , Long >(timePoint ,

vertex.getState(timePoint)));

34 }

35 return tuples;

36 }

37

38 Pair <Long , Long > reduce(Long key , Long[ ] values) {

39 return new Pair <Long , Long >(key ,

graphiteUtils.countDistinct(values));

40 }

Algorithm 7.1: Computational Composability Example
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7.10 Discussion

An important question is whether all kinds of graph analytics algorithms can be expressed

efficiently at interval level. Like its vertex-centric variant, ICM can scale linearly with the num-

ber of vertices on 300 machines [22]. But it is not well-suited for graph analytics that require

a subgraph-centric view around interval-vertices, e.g., local clustering coefficient, triangle and

motifs counting [56, 106, 130]. This is due to the communication overhead, network traffic, and

the large amount of memory required to construct multi-hop neighborhood in each vertex’s local

state [84]. The communication overheads are even greater for the baseline approaches on ac-

count of graph blow-up and redundant communication. Nevertheless, the interval-centric model

permits re-using existing techniques [76] which were proposed in the purview of vertex-centric

model to address such overheads, e.g. superstep splitting [22], source vertex batching [86],

out-of-core computation [126] and relaxing the synchronous barrier [38], some of which we have

explored.
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Chapter 8

Toward Incremental Graph Processing

In this chapter, we introduce on the problem of incrementally processing of dynamic graphs

which are updated in real-time. In order to scale to large graphs and fast rates, we need the

computation of the graph algorithm to be updated incrementally, rather then re-computing the

entire algorithm from scratch on the updated graph. We offer some preliminary thoughts on

how to address this using some of the basic concepts of ICM.

A dynamic graph [5] is a graph on which a stream of updates (or mutations) are applied,

which causes the structure and/or the properties of the graph to change. The rate of updates

may be rapid, O(103/sec)−O(105/sec). The updates may either monotonic, where the updates

cause the structure of the graph strictly grows, i.e., only addition of vertices/edges), or non-

monotonic which allow both additions and deletions of vertices and edges.

While temporal algorithms can be designed using ICM over the entire updated graph, after

one or more updates have been applied, this will not scale to large graphs or high update

rates since the latency for computation may exceed the rate of updates. As a result, we need

to examine incremental computation of such algorithms so that they localize the effect of the

updates and consistently maintains insights on the dynamic graph as it is changing, with low

latency. E.g., fraud detection analyzes and recognizes patterns between customers (vertices)

and financial transactions (edges, properties) in real-time to preempt losses [6].

8.1 Challenges

While such large dynamic graphs are ubiquitous, there are few abstractions and distributed

platforms for analyzing them at scale. Some [39, 99, 49] discretize the dynamic graph into a

sequence of snapshots and recompute them from scratch. These leverage existing offline graph

platforms [74, 35, 88, 80, 89] and algorithms [123], but cause substantial redundancy in compu-
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Figure 8.1: Incremental processing using Wave

tation and distributed communication which limits the update rate that can be maintained [31].

ICM itself operates only on the entire materialized graph and is not designed for online process-

ing. Recomputing over the entire graph can result in severe redundancies in the computation

if the updates only affect a small portion of the entire graph for a given algorithm. E.g., the

clustering coefficient for vertices in one part of the graph may not change if the updates happen

to a different part of the graph. But other algorithms like PageRank may require full recompu-

tation of all vertices, but still benefit from faster convergence if we start with prior values that

were computed.

A fundamental approach [42, 36, 83] to minimize such redundancy is to perform incremental

processing [85]. Prior works [92] have examined incremental computation for monotonic graph

updates. However, näıvely resuming computation from an initial state or the neighborhood

state of the modified vertices/edges may cause the algorithm to produce incorrect results under

non-monotonic updates [114]. E.g., in Fig. 8.1(a), we label vertices with the smallest vertex

ID of the connected component they are part of. Initially, all these vertices are part of the

component A. When deleting edge VA–VB and VB–VF , the vertices VB and VF are affected.

But updating their component labels just based on their neighbors causes VB to be incorrectly

labeled with A by VD, while VF is correctly labeled as C by VC . This is due to VB and VD being

part of a cycle. Such inaccuracies will also propagate as future updates arrive.

8.2 Incremental Graph Processing using Wave

We present Wave, a preliminary approach for incremental distributed graph processing for the

class of selective graph algorithms that extends from the ICM abstraction we have introduced.

Users design temporal graph algorithms using ICM, but Wave avoids redundant computation
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and communication by dynamically tracking the state dependencies among vertices to decide if

incremental computation on specific vertices is required. If so, it transparently schedules vertex

execution and state inheritance at an appropriate superstep. The results provided by Wave are

identical to recomputing the algorithm on the new graph using ICM, but orders of magnitude

faster.

Selective graph algorithms are a sub-class of graph algorithms for which vertex program

is a selection function that compares messages received via in-edges using min, max or other

comparative operations, and uses one of the messages to update vertex state either directly or

by performing some computation using it. For such algorithms, the state of vertex depends on

a single in-neighbor vertex. e.g., Breath First Search, Weakly Connected Components, Single

Source Shortest Path, Reachability, etc.

8.2.1 Approach

Two key challenges in incrementally processing of dynamic graphs are to identify (1) which

vertices of the graph are affected by updates and require recomputation, and (2) what prior

states should be reused in the recomputation. We make two observations that help address

these:

1. We say a vertex v is dependent on a vertex u if there is a directed path from u to v. e.g.

In Fig 8.1, vertex VB is dependent on vertex VA. Similarly, vertex VD is dependent on VE, VB

and VA, however not on VF or VC as no directed path from either VF or VC exists. Here, if the

state of a vertex or its adjacent edge changes, or they are mutated, then that vertex has to be

recomputed. We term such a vertex as affected. This may cascade a recomputation to all its

dependent vertices. e.g., In Fig 8.1, when edge VB → VF is deleted, state of vertex VF must be

re-computed. For doing so, vertex VF pulls state from its in-neighbor VC .

2. For vertices with cyclical dependencies – in-neighbor is dependent on vertex which initiates

the pull, directly re-using state from in-neighbor may result in incorrect result. E.g., for the

deletes in Fig. 8.1(a), the cycle VB–VF–VD means VB cannot directly use VD’s state A.

To eliminate the affect of cycles, we can track all transitive dependencies in the graph.

However, näıvely tracking the transitive dependencies between affected vertices is expensive,

takes O(V 2) space and requires maintainence of a global structure across distributed machines.

Instead, we maintain a level information for each vertex that is the path-length from the

“source” vertex that its current state is causally dependent on. Intuitively, if level(v) < level(u),

then v is not dependent on u; else, v may be dependent on u. Such levels are useful since it
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tells us how many supersteps an update to the source will take to propagate to the dependent

vertex, for traversal based algorithms.

Levels also help detect cycles in vertex-centric computation, where a message updates tra-

verse one edge per superstep. If a vertex is not dependent on an updated vertex, it is not part

of its cycle. Else, any update on a vertex should propagate and wait for s = level(u)− level(v)

supersteps to see if it is returned back to itself. If so, there is a cycle and a recomputation of

all vertices in the cycle may be needed. In the worst case, 2s − 1 supersteps are required to

converge. E.g., in Fig. 8.1(b), deleting the edges causes Wave to wait for 3 supersteps for VB’s

updates to propagate through the 3-cycle, and subsequently converge in the 4th superstep. But

the edge delete and add that affect VF can converge in 1 superstep as it is not part of a cycle.

Besides levels, vertices also maintain the last received update message from each of its

adjacent vertices. This is a form of memoization which ensures that causally dependent vertices

that are not part of a cycle can immediately reuse an alternative recent message from a neighbor

to converge to a solution in one superstep. This trades off memory but saves communication

and synchronization costs. The number of vertices for which messages are memoized can be

dynamically tuned.

This is a conservative version of Wave (Wave-C) that uses just the level information to

detect cycles, causing up to 2s− 1 supersteps. As an optimization, we maintain a fixed-length

Bloom filter at each vertex that tracks vertices that are part of a cycle it is part of. Since

Bloom filters have no false negatives, we know that the absence of an updated vertex at a given

vertex’s filter means it is not dependent or part of its cycle. This can save s supersteps, and

we refer to this as Wave-B.

8.3 Experimental Evaluation

8.3.1 Setup

We evaluate the performance of our preliminary design of Wave for Breadth First Search (BFS),

Connected Components (CC) and PageRank (PR) algorithms, on the Twitter graph [14]. The

graph is initially populated with 41M vertices and 1.4B edges, and subsequently, updates con-

sisting of an equal number of edge additions and deletions are streamed in to the graph. These

updates are batched into 10M, 50M and 100M and are applied before the incremental compu-

tation is performed by Wave [97, 114, 49].

We compare Wave against two baselines. Recompute is näıve and reruns the full user algo-

rithm on the updated graph. KS-Lite is a vertex-centric version of the incremental Kickstarter

approach [114], but like the original, does not support the non-monotonic PR algorithm. Be-
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Figure 8.2: Incremental Graph Processing on Twitter [14] Dataset. Size of update batch is
shown on inner X axis.

sides the conservative Wave-C that defers compute supersteps based on levels, we also evaluate

the efficient Wave-B that uses Bloom filters to identify if vertices are not in a cycle before

awaiting supersteps.

8.3.2 Results

Fig. 8.2 shows the time taken by these 4 strategies on 8 machines. Wave-C is 7–23× faster than

Recompute and 3–4× faster than KS-Lite. Wave-B is even faster than Wave-C by 1.37–3×.

These benefits correlate with fewer (≈ 40%) vertex recomputes. Larger batch sizes increases

the throughput (average updates/sec) for the incremental approaches, with Wave-B supporting

a peak of 8.3M updates/sec for BFS, i.e., close to a 1 million updates/sec per machine.

8.4 Discussion

These initial results are promising and offer a strong motivation for further investigation of in-

cremental processing for a larger class of graph algorithms, with ICM and Graphite forming

the core. We also need to examine formal guarantees of the correctness of such incremental pro-

cessing for the supported class of graph algorithms. Lastly, additional platform enhancements

and validation are required. These are left to future work.
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Chapter 9

Conclusions

In this thesis, we present the Interval-centric Computing Model (ICM), a novel and unifying

abstraction for enabling analytics over large temporal graphs by exposing time-intervals as a

first-class entity. The cornerstone of our model is a unique transformation operator called Time-

warp, which enables automatic sharing of computation and communication across adjacent

time-points of a vertex. Warp offers two essential properties. It implicitly enforces temporal

bounds between the time-intervals of vertices, edges and messages for simple and consistent

processing by the user logic. Two, its maximal partition-size property guarantees that the

number of user logic calls and the number of messages generated are minimal, giving ICM its

performance. We rigorously evaluate ICM’s performance and scalability for 6 diverse real-world

temporal graphs – as large as 131M vertices and 5.5B edges, and as long as 219 snapshots, in

one of the largest such studies. Our ability to express 12 TD and TI algorithms attests to its

intuitiveness and comparison with 4 baseline platforms on a 10-node commodity cluster shows

that ICM shares compute and messaging across intervals to out-perform them by up to 25×.

Graphite also exhibits weak-scaling with near-perfect efficiency.

In summary, ICM plugs a key gap in current literature for generic and scalable temporal

graphs primitives. We sought to develop a thin extension on top of existing parallel graph

computation models with the goal to identify the essential data model and core operators

needed to support efficient temporal graph computation. We believe that ICM can be adopted

in other static graph processing systems, including GraphX [35], GraphLab [72], GoFFish [100],

and Gelly [18], and we are hopeful that the proposed abstraction will enable further development

of temporal analytics.

As future work, we plan to extend ICM to process real-time temporal graphs of a streaming

nature, offer querying capabilities over temporal property graphs and explore possible storage

and partitioning strategies. Support for formal temporal graph algebra is also a possibility.

92



Appendices

93



Appendix A

Time-warp using Temporal Sort-Merge

Aggregation

𝜏m S M

[0,4) S1 18

[2,7) S1 20

[5,7) S1 22

[5,9) S1 27

[9,10) S1 5
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𝜏m M
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S M Time Join
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[9,10) S1 5

Time Warp

Figure A.1: Example : TimeWarp operating on partitioned state and input message for an
active vertex. (Aggregation : MIN)

Sort-Merge Aggregation algorithm computes an aggregation result of larger interval by merg-

ing aggregate result for two smaller intervals. Figure A.2 illustrates working of sort-merge ag-

gregation (shown in Algorithm A.1) for example shown in Figure A.1. Figure A.2(b) depicts the

intermediate MIN aggregate result after the first merging step. In this step, intervals [0, 4) and

[5, 7), [2, 7), [5, 9) and [9, 10) are merged. Without loss of generality, −∞ is used for intervals

where aggregate value is not known, such as interval [4, 5). Finally, Figure A.2(c) represents

the interval after the second merge, [0, 7) and [2, 10) are merged.
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1 void sortMergeAggregation(int[] timePoints , Message [] msgs[], int left ,

int right , Message identity) implements TimeWarp {

2

3 if (left+1 < right) {

4 int mid = left + (right - left)/2;

5 mid += (mid&1) - 1;

6

7 sortMergeAggregation(timePoints , msgs , left , mid , identity);

8 sortMergeAggregation(timePoints , msgs , mid+1, right , identity);

9 merge(timePoints , msgs , left , mid , right , identity);

10 }

11

12 Message aggregate(Message [] messages , Message identity) {

13 Message minMsg = identity;

14 for(Message msg : messages) {

15 minMsg = msg.getValue () < min.getValue () ? msg : minMsg;

16 } return minMsg;

17 }

Algorithm A.1: Pseudo Code for Temporal Sort-Merge Aggregation
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Figure A.2: Example of merging for MIN aggregation. After each merging step, the values
assigned to an interval is the MIN of the merged interval messages.
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1 void merge(int[] timePoints , Message [] msgs , int left , int mid , int right ,

Message identity) {

2 int n1 = mid - left + 1, L[] = new int [n1];

3 int n2 = right - mid , R[] = new int [n2];

4 Message L_M[] = new Message [n1], R_M[] = new Message [n2];

5

6 for (int i=0; i<n1; ++i) {

7 L[i] = timePoints[left + i];

8 L_M[i] = msgs[left + i];

9 }

10

11 for (int j=0; j<n2; ++j) {

12 R[j] = timePoints[mid + 1 + j];

13 R_M[j] = msgs[mid + 1 + j];

14 }

15

16 int i = 0, j = 0, k = left;

17 Multiset <Message > cache , include , exclude;

18

19 while (i < n1 && j < n2 && !( L[i] < 0 || R[j] < 0 ) ) {

20 if (L[i] <= R[j]) {

21 timePoints[k] = L[i];

22 if(i < n1 -1) { include.add(L_M[i+1]); }

23 exclude.add(L_M[i]);

24 if(L[i] == R[j]) {

25 if(j < n2 -1) { include.add(R_M[j+1]); }

26 exclude.add(R_M[j]);

27 j++;

28 } i++;

29 } else {

30 timePoints[k] = R[j];

31 if(j < n2 -1) { include.add(R_M[j+1]); }

32 exclude.add(R_M[j]);

33 j++;

34 }

35 msgs[k] = aggregate(cache.toArray (), identity);

36 cache.add(include); cache.removeAll(exclude);

37 k++;

38 }

39 while (i < n1 && !L[i]<0) {

40 timePoints[k] = L[i];
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41 msgs[k] = L_M[i];

42 i++; k++;

43 }

44 while (j < n2 && !R[j]<0) {

45 timePoints[k] = R[j];

46 msgs[k] = R_M[j];

47 j++; k++;

48 }

49 while (k <= right) {

50 timePoints[k] = -∞;

51 msgs[k] = identity;

52 k++;

53 }

54 }

Algorithm A.2: Pseudo Code for Merge operation
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[45] P. Holme and J. Saramäki. Temporal networks. Physics Reports, 2012. 1, 3, 41

[46] Silu Huang, Ada Wai-Chee Fu, and Ruifeng Liu. Minimum spanning trees in temporal

graphs. In ACM SIGMOD, 2015. 3, 9, 35, 38

[47] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:

Wait-free coordination for internet-scale systems. USENIX ATC, 2010. 47

103

http://doi.acm.org/10.1145/2592798.2592799
http://doi.acm.org/10.1145/1807128.1807139
https://doi.org/10.1145/3199523
https://doi.org/10.1145/3199523


BIBLIOGRAPHY

[48] Alexandru Iosup et al. Ldbc graphalytics: A benchmark for large-scale graph analysis on

parallel and distributed platforms. PVLDB, 2016. 58, 79

[49] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-evolving

graph processing at scale. In Proceedings of the Fourth International Workshop on Graph

Data Management Experiences and Systems, GRADES ’16, pages 5:1–5:6, New York,

NY, USA, 2016. ACM. ISBN 978-1-4503-4780-8. doi: 10.1145/2960414.2960419. URL

http://doi.acm.org/10.1145/2960414.2960419. 87, 90

[50] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion Sto-

ica. TEGRA: Efficient ad-hoc analytics on time-evolving graphs. Technical report, UC

Berkley, 2019. URL https://www.anand-iyer.com/papers/tegra.pdf. 10

[51] David S. Johnson and Catherine C. McGeoch, editors. Network Flows and Matching:

First DIMACS Implementation Challenge. American Mathematical Society, 1993. 51

[52] Jun Yang and J. Widom. Incremental computation and maintenance of temporal aggre-

gates. In Proceedings 17th International Conference on Data Engineering, pages 51–60,

April 2001. doi: 10.1109/ICDE.2001.914813. 47

[53] Maja Kabiljo. Improve the way we keep outgoing messages. http://issues.apache.

org/jira/browse/GIRAPH-388, 2012. 55

[54] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998.

ISSN 1064-8275. doi: 10.1137/S1064827595287997. URL http://dx.doi.org/10.1137/

S1064827595287997. 80

[55] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference prob-

lems for temporal networks. Journal of Computer and System Sciences, 64(4):820

– 842, 2002. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.2002.1829. URL

http://www.sciencedirect.com/science/article/pii/S0022000002918295. 1

[56] Arijit Khan. Vertex-centric graph processing: Good, bad, and the ugly. In EDBT, 2017.

86

[57] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and Panos

Kalnis. Mizan: A system for dynamic load balancing in large-scale graph processing.

In Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys

104

http://doi.acm.org/10.1145/2960414.2960419
https://www.anand-iyer.com/papers/tegra.pdf
http://issues.apache.org/jira/browse/GIRAPH-388
http://issues.apache.org/jira/browse/GIRAPH-388
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://www.sciencedirect.com/science/article/pii/S0022000002918295


BIBLIOGRAPHY

’13, page 169–182, New York, NY, USA, 2013. Association for Computing Machinery.

ISBN 9781450319942. doi: 10.1145/2465351.2465369. URL https://doi.org/10.1145/

2465351.2465369. x, 6, 7, 57

[58] U. Khurana and A. Deshpande. Efficient snapshot retrieval over historical graph data. In

IEEE ICDE, 2013. 8, 11

[59] Udayan Khurana and Amol Deshpande. Storing and analyzing historical graph data at

scale. In EDBT, 2016. 8, 11

[60] Nick Kline and Richard Thomas Snodgrass. Computing temporal aggregates. In Pro-

ceedings of the Eleventh International Conference on Data Engineering, ICDE ’95, pages

222–231, Washington, DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-6910-1.

URL http://dl.acm.org/citation.cfm?id=645480.757696. 47

[61] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki. Tem-
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