
An Interval-centric Model for Distributed
Computing over Temporal Graphs

Swapnil Gandhi and Yogesh Simmhan
Indian Institute of Science, Bangalore

{gandhis, simmhan}@IISc.ac.in

Abstract—Algorithms for temporal property graphs may be
time-dependent (TD), navigating the structure and time con-
currently, or time-independent (TI), operating separately on
different snapshots. Currently, there is no unified and scalable
programming abstraction to design TI and TD algorithms over
large temporal graphs. We propose an interval-centric computing
model (ICM) for distributed and iterative processing of temporal
graphs, where a vertex’s time-interval is a unit of data-parallel
computation. It introduces a unique time-warp operator for
temporal partitioning and grouping of messages that hides the
complexity of designing temporal algorithms, while avoiding
redundancy in user logic calls and messages sent. GRAPHITE is
our implementation of ICM over Apache Giraph, and we use it
to design 12 TI and TD algorithms from literature. We rigorously
evaluate its performance for diverse real-world temporal graphs
– as large as 131M vertices and 5.5B edges, and as long as
219 snapshots. Our comparison with 4 baseline platforms on a
10-node commodity cluster shows that ICM shares compute and
messaging across intervals to out-perform them by up to 25×,
and matches them even in worst-case scenarios. GRAPHITE also
exhibits weak-scaling with near-perfect efficiency.

I. INTRODUCTION

Temporal graphs are an emerging class of property graphs
with applications in both traditional domains like transit,
financial transaction and social networks, and emerging ones
like Internet of Things, knowledge graphs and human con-
nectomes. The structure and attributes of such graphs may
change over time [1]. These are represented concisely as
interval graphs where each entity in the graph (vertex, edge,
their attributes) has a start and an end time-point indicating
their interval of existence. Fig. 1(a) shows an interval graph
for a transit network, where vertices are transit-stops, directed
edges indicate a transit option (e.g., bus, train) between them,
an interval on the edge identifies the time-period between
which the transit option can be initiated, and an edge attribute
identifies the travel cost for that transit. In the example, the
lifespan of these vertices are perpetual, [0,∞), for simplicity.
Interval graphs can be multi-graphs.

Despite their growing availability, there is limited work on
temporal graph primitives, platforms and algorithms. Broadly,
temporal graphs algorithms can be time-independent (TI) or
time-dependent (TD) [2]. TI algorithms, also called snapshot-
reducible [3], can discretize a temporal graph into snapshots,
one per time-point [4], and operate on each snapshot indepen-
dently. E.g., Fig. 1(c) shows the transit network decomposed
into 8 snapshots, S1–S8, each indicating the vertices, edges
and attributes active at that time-point. Algorithms like PageR-

� �

�

�

&

�
ϭ

ϯ

^ϭ

� �

�

�

&

�
ϭ

^Ϯ

� �

�

�

&

�
ϰ

^ϯ

� �

�

�

&

�
ϯ

ϰ

^ϱ

� �

�

�

&

�
ϰ

ϭ

Ϯ
^ϲ

� �

�

�

&

�
Ϯ ϰ

^ϴ

� �

�

�

&

�
ϰ

^ϰ

� �

�

�

&

�
ϰ

Ϯ
^ϳ

(a) Interval Graph (b) Transformed Graph

(c) Multi-snapshot Graph

� �

�

�

&

�

ϯ͕ϱͿ ϰ

ϴ͕ϵͿ Ϯ ϱ͕ϵͿ ϰ

ϴ͕ϵͿ ϭ

ϭ͕ϯͿ ϭ

ϭ͕ϮͿ ϯ
ϳ͕ϵͿ Ϯϱ͕ϲͿ ϯ

�ϭ �ϯ �ϰ �ϱ �ϳ

�ϰ �ϱ �ϴ �ϴ

�Ϯ �ϭ�ϵ�ϴ�ϳ�ϲ

&Ϯ&ϯ&ϴ

�Ϯ

�ϴ�ϱ �ϳ�ϲ

Ϭ Ϭ Ϭ

ϬϬ

Ϭ

ϬϬ Ϭ

Ϭ

ϬϬ

Ϭ

ϰϰϯ

ϰϰϰϰ ϭ

Ϯ

Ϭ

Ϭ

�ϲ

�ϴ

�ϵ

Ϯ

ϬϬ Ϭ

Ϭ

ϭ

ϮϬ

ϯ

ϭ

Figure 1: Transit network as a temporal graph.

ank (PR), Breadth First Search (BFS) and Connected Compo-
nents can be modeled as TI to run on each Si. Existing vertex-
centric computing models (VCM) for non-temporal graphs
like Google’s Pregel [5], or multi-snapshot approaches like
SAMS [2] can be used to design and execute such algorithms
on temporal graphs. The latter avoids redundant computation
across different snapshots to improve performance.

TD algorithms, also called extended snapshot-reducible [3],
actively use temporal knowledge to navigate and process the
entire graph, or large intervals within them. The need for time-
respecting paths on a road network is intuitive; it ensures that
time-varying factors like traffic density and road-closures are
incorporated [6]. TD centrality measures are used to estimate
information propagation delays in social networks [1]. Tempo-
ral motifs like feed-forward triangles in transaction networks
let us identify monetary routing patterns.

Multi-snapshot approaches applied to TD algorithms can
give incorrect results [2], [6], [7]. TD algorithms for earli-
est/latest arrival time and reachability have been proposed [6].
Other bespoke algorithms [8], [9] and patterns can be extended
to similar ones. E.g., the transformed graph approach [6]
converts an interval graph into an algorithm-specific non-
temporal graph. Intervals on vertices and edges map to vertex
and edge replicas for time-points in the interval. TD algorithms
work on the much larger transformed graph with implicitly-
encoded intervals, allowing traversal over time and space.
Fig. 1(b) shows a transformed graph for the transit network.

A key gap is the lack of a unifying abstraction that scales for
constructing both TI and TD algorithms on temporal graphs,
which will ease algorithm design and perform well for diverse,
large and long graphs. Platforms and primitives like SAMS [2],
Chronos [4] and GraphInc [10] reuse computing or messaging

����

�����*&&&���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�%BUB�&OHJOFFSJOH�	*$%&


��������9�����������¥�����*&&&
%0*���������*$%&����������������



across snapshots, and some operate in a distributed mode
for scalability [10]. But they are limited to TI algorithms.
Distributed abstractions for TI and TD algorithms [11], [12] do
not scale well due to redundant computing or messaging across
time-points and are, arguably, less intuitive. Ad hoc patterns
like transformed graph are neither intuitive nor scale.

We address this gap through an interval-centric model of
computing (ICM) for designing TI and TD algorithms over
temporal graphs. ICM uses an interval-vertex as the data-
parallel unit of computing, and executes in a distributed
and iterative manner, like popular component-centric abstrac-
tions [5], [13]. ICM relies on our novel time-warp operator,
which automatically partitions a vertex’s temporal state, and
temporally aligns and groups messages to these states. Warp
offers two essential properties. One, it implicitly enforces
temporal bounds between the time-intervals of vertices, edges
and messages for simple and consistent processing by the user
logic. Two, its maximal partition-size property guarantees that
the number of user logic calls and messages generated are
minimized. Such automatic sharing of compute and messaging
within an interval gives ICM its performance and scaling.
TD Example (Temporal SSSP). Say we wish to find a time-
respecting path with the shortest travel cost [6] in the transit
network in Fig. 1(a), from vertex A starting from time 0 to
every other vertex. For simplicity, the travel time over any edge
is assumed to be 1. Multiple solutions can exist for the same
source and destination vertices, but which arrive at different
points in time and have minimal cost for that point.

This degenerates to running the single source shortest path
(SSSP) algorithm using VCM on the transformed graph in
Fig. 1(b). E.g., to reach from A to E, we depart A at time 5
(denoted by A5), arrive at B at time 5+1 = 6 while incurring a
cost (edge attribute) of 3 units, and depart B at time 8 to reach
E at time 8+1 = 9, for a total travel cost of 3+2 = 5 units.
Another solution is from A1 → C2 → C5 → E6 that costs
3+4 = 7 units, but is valid for the earlier arrival time of 6 at
E. Finding the shortest paths from the source to all destination
vertices at all valid arrival times takes 21 vertex visits and 27
edge traversals – the compute and messaging cost.

Our ICM design for temporal SSSP, operates on the interval
graph in Fig 1(a), navigates across both vertices and edges, by
traversing valid overlapping time-intervals, with just 7 “inter-
val vertex” visits and 6 edge traversals. While we discuss the
design for SSSP in Sec. IV, intuitively, we replicate the vertex
into the minimal necessary sub-intervals, on-demand, based on
the different intervals present in the messages that arrive and
the out-edges. This makes designing temporal SSSP (among
many other algorithms) similar to its non-temporal VCM
variant, while avoiding all redundant compute and messaging.

We cannot solve this algorithm on a multi-snapshot graph
as the partial paths over time is lost across snapshots. !

Specifically, we make the following contributions:
1) We define the temporal graph data model in Sec. III.

We introduce and illustrate the novel ICM programming
abstraction and time-warp operator to design distributed
TI and TD algorithms on temporal graphs, in Sec. IV.

2) We briefly discuss the use of ICM to intuitively design
12 TI and TD algorithms from literature in Sec. V.

3) We describe the GRAPHITE distributed platform, which
implements ICM, in Sec. VI. In Sec. VII, we offer
detailed experiments to evaluate the performance and
scalability of ICM for these 12 algorithms on 6 diverse
real-world graphs, as large as 131M vertices and 5.5B
edges, and as long as 219 snapshots. We compare ICM
to 4 baselines which we implement from literature.

We offer a review of related work in Sec. II, and present our
conclusions and future work in Sec. VIII.

II. RELATED WORK

A. Distributed Graph Processing Primitives
Graph applications tend to be irregular and computationally

complex. Graph processing primitives offer a structure to
more-easily design and execute graph algorithms. Distributed
abstractions such as Pregel [5] and GraphLab [14] adopt a
data-parallel, iterative execution model to horizontally scale
across machines, using multiple CPU cores and cumulative
memory. Parallelism is exposed at the granularity of graph
components, and hence called component-centric computing
models [13], with VCM the most common [15], [16]. But,
existing abstractions focus on large non-temporal graphs. ICM
is in the spirit of such intuitive component-centric models, but
introduces time-intervals and time-warp as first-class entities
to ease programming and enhance scaling for temporal graphs.

B. Time Independent Temporal Graph Processing
Time Independent (TI) algorithms can model and process

temporal graphs as a series of snapshots. This allows existing
primitives, platforms and algorithms for graph processing [15],
[16] to be applied independently to each snapshot at a dis-
tinct time-point. However, processing snapshots independently
causes redundant computation and messaging, limiting scala-
bility. Systems and abstractions [4], [10], [17] have tried to
address this inefficiency.

In particular, SAMS [2] presents rewriting rules for auto-
matic co-scheduling of common steps during multi-snapshot
analysis, similar to SIMD processing. This addresses some
performance limitations we ourselves observe in our exper-
iments when operating over a large number of snapshots.
Chronos [4] offers an efficient in-memory layout for vertices
that span multiple snapshots to leverage time-locality. It cou-
ples this with a vertex-centric engine for batched execution
over multiple snapshots. Concurrent processing of the vertex
states from across snapshots enhance cache hits. Unlike us, the
user logic execution for a vertex is not shared across snapshots
but only reduces (in-memory) communication when sending
common messages that span contiguous snapshots.

GraphInc [10] incrementally processes real-time graph up-
dates using Giraph’s VCM. It reuses the prior snapshot’s
state to rapidly compute an analytic for the new snapshot. It
also memoizes incoming messages to avoid redundant vertex-
compute if a message was seen earlier. However, updates to a
snapshot must complete before moving to the next. Tegra [18]

����



relaxes this by allowing streaming updates to be folded into
an ongoing analytic using a pause-shift-resume model. This
reduces the time to apply and process recent updates. But both
these platforms are designed for TI analytics. States from prior
snapshots are used to reduce the recompute time for a later
snapshot rather than support time-dependent algorithms. We
support both TI and TD algorithms, but focus on fully evolved
graphs with valid time [19] rather than streaming ones.

C. Time Dependent Temporal Graph Processing
Time Dependent (TD) algorithms need the state of the

graph at a previous time-point to execute the current one.
Given the limited platforms and abstractions for designing
such algorithms, custom techniques for individual analytics
have been proposed [6], [8], [9], [20]. These are not general-
izable primitives. Among bespoke algorithms, the transformed
graph approach [21] can be adapted for a large class of TD
algorithms, albeit with algorithm-specific transformations. It
can also be extended for distributed execution using VCM.
But, as we demonstrate (Sec. VII), it bloats the graph size
and suffers from poor scalability.

Like us, Tink [11] supports distributed processing of interval
graphs, and offers a library of TD algorithms over Apache
Flink. Like Chronos, it avoids sending redundant messages
that span an interval but does not share computation across an
interval due to time-point based primitives. As we illustrate,
this limits scalability. ICM’s warp operator maximizes sharing
of calls to compute and messages across intervals.

Our prior work, GoFFish-TS [12] proposes primitives for
TD algorithms using a multi-snapshot approach. Here, the state
from a prior snapshot can be explicitly passed as a message to
the next snapshot by the user logic. Within a snapshot, it uses
a subgraph-centric model of execution. It too does not share
computation, is limited to processing one snapshot at a time,
and states have to be explicitly passed over time.

None of the reviewed literature provide results for temporal
graphs as large and diverse as we report here, nor examine the
wide variety of TI and TD algorithms that we consider.

D. Models and Algebra
Temporal data models and querying primitives from rela-

tional databases [19] are only gradually translating to mod-
eling temporal features in graphs, and on graph querying
languages [22]. Moffit and Stoyanovich [7] propose a Temporal
Graph Algebra (TGA), which introduces principled temporal
generalizations based on temporal relational algebra for con-
ventional graph operators. Others use indexing for temporal
reachability queries in strongly connected components at var-
ious time points [23]. ICM is imperative and can be used
to design general purpose temporal graph analytics, and is
complementary to these.

III. TEMPORAL GRAPH MODEL

Our distributed primitives focus on composing analytics
over historic graphs, with dynamism in their structure and
attributes, but which are fully evolved and ready for processing.

Here, we define the temporal graph data model that our pro-
posed abstraction supports; such formalism avoids ambiguity.
Time Domain. WLOG, we assume a linearly ordered discrete
time domain Ω whose range is the set of non-negative whole
numbers. Each instant in time is a time-point, and their linear
ordering means that ti < ti+1 =⇒ ti happened before ti+1.
One time unit is the atomic increment of time, and corresponds
to some user-defined wall-clock time, such as p seconds.
Time-interval. Entities of a temporal graph have an associated
time-interval. Given tstart, tend ∈ Ω, then τ = [tstart, tend)
indicates a time-interval that starts from and includes tstart,
and extends to but excludes tend. The time-points that are
part of a time-interval τ = [tstart, tend) is the set {t | t ∈
Ω and tstart ≤ t < tend}.
Interval Relations Boolean relations between intervals follow
Allen’s conventions [24]. The symbol " represents during,
& represents during or equals, ' represents intersects, =
represents equals, and ( is the meets relation. ∩ returns the
intersecting interval between two intervals.

Definition 1. (Temporal Graph) A temporal graph is a di-
rected multi-graph G = (V,E, L,AV , AE), where:

• V is a finite set of vertices, where each vertex v ∈ V is
a pair 〈vid, τ〉. vid ∈ V is a unique and opaque internal
identifier and τ = [ts, te) is the time-interval for which the
vertex exists (also called the lifespan of the vertex).

• E is a finite set of edges, where each directed edge e =
〈eid, vidi, vidj , τ〉 ∈ E is a 4-tuple identified by its unique
identifier eid ∈ E, and the edge exists for the interval τ =
[ts, te) (lifespan of the edge). The edge connects the source
vertex vidi with the sink vertex vidj , with vidi, vidj ∈ V.

• L is a finite set of property (also called attribute) labels that
can be associated with either vertices or edges.

• AV (or AE) is a finite set of vertex (or edge) property
values, where each 4-tuple 〈vid, l, val, τa〉 ∈ AV represents
the value val associated with a label l ∈ L of the vertex (or
edge) identified by vid, for the interval τa. A label may
have distinct values for non-overlapping intervals during
the lifespan of its vertex (or edge). Formally, for all vertex
property values 1 〈vid, l, val, τa〉 ∈ AV , there does not exist
any 〈vid, l, val′, τ ′a〉 ∈ AV such that τa'τ ′a and val ,= val′.
We define several constraints to guarantee the soundness of

the temporal graph.

Constraint 1 (Unique vertices and edges). Any vertex (or
edge) uniquely identified by its vid (or eid) exists at most
once, and only for a contiguous time-interval, and once it
ceases to exist, a vertex (or edge) with the same vid (or eid)
can never re-occur at a later time-point. Formally, for all
vertices 1 〈vid, τ〉 ∈ V , there does not exist another vertex
〈vid′, τ ′〉 ∈ V such that vid = vid′ and τ ,= τ ′.

Constraint 2 (Referential integrity of edges). For an edge to
exist, the time-intervals associated with its source and its sink
vertices must contain the edge’s time-interval. Formally, for all

1This can similarly be extended for edges, but is omitted for brevity.

����



edges 〈eid, vidi, vidj , τ〉 ∈ E, there exist vertices 〈vidi, τ ′〉 ∈
V and 〈vidj , τ ′′〉 ∈ V such that τ & τ ′ and τ & τ ′′.

Constraint 3 (Referential integrity of properties). For a vertex
property value to exist, the interval of the vertex must contain
the interval of the vertex property. Formally, for all vertex
properties 1 〈vid, l, val, τa〉 ∈ AV , there exists a vertex
〈vid, τ〉 ∈ V such that τa & τ .

Constraint 1 prevents the graph from having multiple copies
of a vertex or edge at the same time-point. Forcing a contigu-
ous lifespan simplifies the reasoning about the behavior of our
computation model, though this may be trivially relaxed. Users
may encode their custom vertex or edge name as a property to
indicate logical equivalence of reappearing vertices or edges
at disconnected time-intervals. Constraints 2 and 3 prevent an
invalid graph by ensuring that edges connecting vertices, or
properties for vertex or edges, are concurrent.

IV. THINKING LIKE AN INTERVAL

In this section, we describe our novel and intuitive interval-
centric distributed programming abstraction as a unified model
for designing TI and TD algorithms. We also propose an
innovative time-warp operator that performs efficient temporal
alignment and grouping of messages with vertex states. This
eases the temporal reasoning required by the user logic, and
avoids redundant execution of user logic and messaging within
an interval to provide key performance benefits.

A. Interval-centric Computing Model (ICM)

ICM lets users define their logic from the perspective of
a single vertex, for a particular time-interval, and this logic
is executed on every active vertex and its active interval(s)
(defined in Sec. IV-A2) in a data-parallel manner. We use Bulk
Synchronous Parallel (BSP) execution [5], which alternates
a computation phase, where the user logic executes, with
a communication phase, where messages are bulk-transfered
between vertices at a global barrier. These continue for several
iterations till the application converges. Fig. 2 illustrates this.

The computation phase has two steps: compute and
scatter, which are user-provided logic. Compute operates
on the vertex, its prior states and the incoming messages, in the
context of a particular interval, and can update the vertex’s
current state for that interval. Then, scatter operates on the
out-edges for a vertex, and plays two roles. It decides if the
updated state should be sent as a message to the adjacent
vertex the edge connects to, and if so, provides a transform
function on the state to create the message and its interval.

Once the compute and scatter logic execute for all active
vertices and their active intervals, the communication phase
delivers messages to the destination vertices. The current
iteration (superstep) is done, and the next iteration can start.

1) Dynamically Partitioned Vertex States: Vertices in ICM
inherit static information from the temporal graph G, and also
maintain dynamic states for the user logic. For a vertex vid,
the former includes the interval τ of the vertex, its out-edges
and their lifespans 〈eidj , vid, vidj , τj〉, and the properties of

vertex intervals, 〈vid, l, val, τa〉, and similarly edge intervals.
The dynamic state for a vertex consists of discrete states for
a set of partitioned intervals that cover the vertex’s lifespan.
Compute and scatter can access these states, and compute can
update them in the context of these partitioned intervals. A
state may hold any user-defined content. Formally, if τ =
[ts, te) is the static lifespan of a temporal vertex, then the
state for the vertex, partitioned into n intervals, is: S(τ) =
{〈τi, si〉 | i ∈ [1, n] ∧ τi = [tis, t

i
e) ∧ t1s = ts ∧ tne = te ∧ ∀j ∈

[1, n), tje = tj+1
s }, i.e., the partitioned intervals cover the entire

lifespan of the vertex, and no two partitioned intervals overlap.
Importantly, states are dynamically repartitioned when the

state for a sub-interval in the partitioned interval’s state is
updated. So if we have 〈τi, si〉 as a partitioned state for a
vertex, and compute updates the state for its initial sub-interval
τj , where tjs = tis and tje < tie, with a new value sj , then we
automatically replace the state si with two states 〈[tis, tje), sj〉
and 〈[tje, tie), si〉. Even without a state update, it is valid to split
a partitioned interval into sub-intervals while replicating their
state values, i.e., {〈[ts, te), s〉} ≡ {〈[ts, t′), s〉, 〈[t′, te), s〉}.

In the first iteration of ICM, each vertex starts with a single
initialized state for its entire lifespan 2. As the iterations
progress and states for sub-intervals for the vertex are updated
by the compute logic, the number of partitions can grow. In
the worst case, we will have as many partitions as the number
of time-points in the vertex’s lifespan.

2) Active Vertices and Intervals: Compute only executes on
active vertices, and on active intervals within them. Vertices
that have received a message from the previous iteration are
called active vertices, and the sub-intervals within them which
overlap with the interval of at least one message to that
vertex are active intervals. The time-warp operator (Sec. IV-B)
finds the intersections between the partitioned vertex state
and the messages it receives, and compute is invoked on
each intersecting vertex sub-interval, with that state and those
messages. Each time-point within the active sub-intervals of a
vertex will be part of exactly one compute method call.

Unlike Pregel, all our vertices implicitly vote to halt and
deactivate after each superstep, and get reactivated only if they
receive a message in the next or a future iteration. This reflects
the design of most VCM algorithms [15], [16]. ICM stops
when no vertices are activated by messages in an iteration.

3) Compute and Scatter Logic: Say, for the temporal vertex
v = 〈vid, τ〉, τi & τ is an active sub-interval. The signature
of the user-defined interval-centric compute logic is given by:

compute(vid, 〈τi, si〉, M[ ]) → S(τi)
where 〈τi, si〉 is a partitioned state for the vertex inherited
from the previous superstep, and M [ ] is the set of messages
received by this vertex from the previous superstep whose
intervals τm are such that τi & τm. The user’s logic can access
the vertex’s and its edges’ static attributes (E,AV and AE)

2In fact, the state of a vertex interval τj is pre-partitioned based on
all sub-intervals τa of its static properties l. So our computing unit is an
interval property vertex. However, since properties are optional and to keep
the discussion concise, we consider states as partitioned only on the vertex
interval and not its property intervals.

����



for any time-interval. These, along with the prior state si and
the received messages M [ ] for this interval τi, are processed
to return optionally updated partitioned states for this interval
S(τi) = {〈τj , sj〉 | τj & τi}. Compute can be called data-
parallelly on the active intervals of the vertex, and the exact
invocation is decided by the warp operator, discussed next.
Since time-points in each active interval are part of exactly
one compute method execution, these updates can happen on
the partitioned states concurrently without interference.

The signature for the user’s transformation and message
passing logic for an active vertex is:

scatter(eid, 〈τ ′k, sk〉) → {〈τm, M〉}
Scatter is called for those out-edges eid of the active vertex
with a time-interval τe such that τk & τe. Here, 〈τk, sk〉 ∈⋃

S(τi), for all partitioned state intervals τi that were updated
by compute, and τ ′k = τk ∩ τe. Scatter is called once for each
such 〈τ ′k, sk〉. Scatter returns one or more message payload(s)
M with their associated time-interval τm that is to be sent
to the sink vertex for that edge. Scatter may be called data-
parallelly on the partitioned intervals of the out-edges, for each
active vertex. Each time-point in an edge’s lifespan is part of
no more than one scatter execution in an iteration, and the
exact number of scatter calls is decided by warp. Scatter can
access the edge’s static attributes (E,AE) for any interval.

Typically, users implement scatter with two concise func-
tions ft and fm that perform transformations to give τm =
ft(τk) and M = fm(sk). But several variations are possible to
balance brevity and flexibility. If the method returns an output
message M = ∅, then no message is sent for this edge and
for this state interval. Scatter may omit the time-interval from
the output, in which case the input state interval is inherited,
i.e., τm = τ ′k. If scatter itself is not provided, then we send a
single message with τm = τ ′k and M = sk.

Once messages for an active vertex are received in a
superstep after the barrier, warp decides their grouping and
executes compute on them for the partitioned vertex states.
Similarly, once the compute step for a vertex completes,
warp decides for each of its out-edges, the mapping from the
updated partitioned state to the sub-interval of the edge on
which to invoke scatter. This is discussed in Sec. IV-B.
Temporal SSSP Example. The temporal single source short-
est path (SSSP) [6] finds a time-respecting path with the
shortest travel cost between a single source vertex and every
other vertex in a temporal graph. Multiple solutions can exist
for the same source to each destination vertex, but which arrive
at different points in time; each path will have the least cost
for that interval of arrival.

The Java pseudo-code for temporal SSSP using ICM is
shown in Alg. 1, and illustrated in Fig. 2 for the interval graph
from Fig. 1(a). The partitioned (dynamic) states for a vertex
maintain the current known lowest cost from the source to
that vertex, for different intervals of arrival. The init method
is called only before superstep 1, and initializes a vertex’s state
to ∞ for its entire lifespan. Compute is called on all vertices
in superstep 1, with no messages and for the entire vertex
lifespan. Only the source vertex updates its state to a travel

1 void init(Vertex v) {
2 v.setState(v.interval, ∞);
3 }
4 void compute(Vertex v, Interval t, int vstate,

Message[ ] msgs) {
5 if(getSuperstep() == 1 && isSource(v)) {
6 v.setState(t, 0); return;
7 }
8 minVal = ∞;
9 for(Message m : msgs)

10 minVal = min(m.value, minVal);
11 if(minVal < vstate) v.setState(t, minVal);
12 }
13 Message scatter(Edge e, Interval t, int vstate){
14 int travelTime = e.getProp("travel-time");
15 int travelCost = e.getProp("travel-cost");
16 return new Message(e, new Interval(t.start +

travelTime, ∞), vstate + travelCost);
17 }

Algorithm 1: Temporal SSSP using ICM

�

��

Interval
Graph

Su
pe

rs
te

p 
1

� ��� & �

� ��� & �

� ��ϯ͕ϱͿ͕�ϰ � & �

Ϭ͕ьͿ Ϭ

ϴ͕ϵͿ͕�Ϯ
ϭ͕ϮͿ͕�ϯ

ϳ͕ϵͿ͕�Ϯ

ϱ͕ϵͿ͕�ϰ ϴ͕ϵͿ͕�ϭ ϭ͕ϯͿ͕�ϭ

Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ьͿ ь

Ϯ͕ьͿ͕�ϯ ϴ͕ьͿ͕�Ϯ

Ϭ͕ьͿ Ϭ Ϭ͕ϰͿ ь
ϰ͕ϲͿ ϰ
ϲ͕ьͿ ϯ

Ϭ͕ϮͿ ь
Ϯ͕ьͿ ϯ

Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ϴͿ ь
ϴ͕ьͿ Ϯ

ϵ͕ьͿ͕�ϱ ϲ͕ьͿ͕�ϳ

Ϭ͕ьͿ Ϭ Ϭ͕ϰͿ ь
ϰ͕ϲͿ ϰ
ϲ͕ьͿ ϯ

Ϭ͕ϮͿ ь
Ϯ͕ьͿ ϯ

Ϭ͕ьͿ ь Ϭ͕ϴͿ ь
ϴ͕ьͿ Ϯ

Ϭ͕ϲͿ ь
ϲ͕ϵͿ ϳ
ϵ͕ьͿ ϱ

ϱ͕ϲͿ͕�ϯ

Partitioned 
States

Interval Messages

Ϭ͕ьͿ Ϭ Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ьͿ ь Ϭ͕ьͿ ьIn
it

� ��� & �

Co
m

pu
te

Sc
at

te
r

W
ar

p
Co

m
pu

te
Sc

at
te

r

Ϭ͕ьͿь ϰ͕ьͿ ϰ
ϲ͕ьͿ ϯ

ʏ ^ D
ϰ͕ϲͿ ь ϰ
ϲ͕ьͿь ϯ͕ϰ

Barrier

Ϭ͕ьͿь Ϯ͕ьͿ ϯ ʏ ^ D
Ϯ͕ьͿь ϯ

Warp for D 
not shown

ڇ ڇ

с с

Su
pe

rs
te

p
2

Su
pe

rs
te

p
3

Pre-scatter Warp not shown

Ϭ͕ьͿь ϲ͕ьͿ ϳ
ϵ͕ьͿ ϱ

ڇ

с
ʏ ^ D

ϲ͕ϵͿ ь ϳ
ϵ͕ьͿь ϱ͕ϳW

ar
p

Co
m

pu
te

Barrier

ϰ͕ьͿ͕�ϰ ϲ͕ьͿ͕�ϯ

Partitioned States

Pre-scatter Warp not shown

Figure 2: SSSP execution using ICM for the temporal graph
from Fig. 1(a). A is the source. Travel time on an edge is 1.

cost of 0 for its lifespan. Since compute has changed the state
for the source vertex for its entire lifespan, scatter is called
once for each overlapping interval of its out-edges having a
distinct property. Each edge sends a message to its sink vertex
with the travel cost to the current vertex (i.e., its updated state;
0 for the source), plus the static property ‘travel-cost’ on that
edge to the sink. The start time of this message is set to the
later of the starting interval of the updated state (cost) or the
edge’s lifespan, plus the ‘travel-time’ property on the edge. So
the cost message received at the sink vertex is valid from that
arrival time and beyond. This logic lets both the travel time
and cost of the edge to be dynamic. This ends superstep 1.

E.g., in Fig. 2, A’s scatter is called twice for the edge to
B, for the two interval properties 〈[3, 5], 4〉 and 〈[5, 6), 3〉. It
sends a message with travel cost (0+4), valid for the interval

����



[3 + 1,∞) for the first, and 〈[5 + 1,∞), 0 + 3〉 for the other.
In future supersteps, a vertex may receive messages from

its neighbor(s) for one or more of its sub-intervals, with
the cost for that interval of arrival. This becomes an active
vertex interval. After warp, compute checks if the current
cost (partitioned state) for that vertex interval is reduced by
any message sent to that interval, and if so, updates it. Any
state update causes scatter to be called on all edge properties
overlapping this interval, and the new candidate lowest cost is
propagated to its neighbors with an updated arrival time.

E.g., in superstep 2, compute is called twice on vertex B
after warp, once for the interval [4, 6) with message value {4}
and once for [6,∞) with messages {3, 4}. The prior states for
both these intervals of B is ∞, and compute updates these to 4
and 3, respectively. Note that B’s state has been dynamically
repartitioned into 3 sub-intervals. Scatter is called on the edge
B to C for its property 〈[8, 9), 2〉 which overlaps with state
〈[6,∞), 3〉, causing message 〈[8 + 1,∞), 3 + 2〉 to be sent.

The algorithm terminates when all vertices and their arrival
time intervals have stabilized to the least cost from the source,
if feasible – i.e., no states change – and no messages are in
flight. E.g., at the final state, vertex F cannot be reached from
A; C and D can be reached during 1 contiguous interval each
with costs 3 and 2; while B and E can be reached during 2
different intervals, with a different lowest cost for each. !
B. Time-warp

Adding time-intervals to compute and scatter is a novel
temporal extension to Pregel [5] or GAS [14] models. How-
ever, the critical benefit of ICM comes from a unique data
transformation we propose: time-warp (or warp). It is a
powerful construct that lets the user logic operate consistently
over temporal messages and partitioned vertex states, and
intuitively design temporal graph algorithms as if for a non-
temporal graph. It is analogous to the shuffle in MapReduce
which transforms the simple Map and Reduce functions into
powerful primitives. Also, warp guarantees automatic shar-
ing of compute and messaging across adjacent time-points,
minimizing the number of calls to compute and the messages
sent. This enhances the performance of ICM algorithms for
temporal graphs having non-trivial lifespans on their entities.

The warp step happens between: (1) the message receipt
at the start of a superstep and the compute step, and (2) the
compute and the scatter steps. It performs temporal alignment,
re-partitioning and grouping that decides the number of calls
to compute and scatter, and their parameters.

The warp operator takes two sets: an outer set containing
partitioned intervals and values, and an inner set with intervals
and values. It returns a single partitioned set of triples, each
containing an interval, a value from the outer set, and a set
of values from the inner set. Intuitively, before the compute
step for an active vertex, warp groups the input messages for
a vertex and their intervals (inner set) that overlap with the
partitioned states for the vertex (outer set), to form the fewest
number of (re)partitioned states that are each a temporal subset
of the group of messages. This may repartition the vertex

߬߬ŵ D
Ϭ͕ϰͿ ŵϭ
Ϯ͕ϳͿ ŵϮ
ϱ͕ϳͿ ŵϯ
ϱ͕ϵͿ ŵϰ
ϵ͕ϭϬͿ ŵϱ

dt ߬ ^ ॸ
ǁϭ Ϭ͕ϮͿ Ɛϭ ŵϭ
ǁϮ Ϯ͕ϰͿ Ɛϭ ŵϭ͕ŵϮ
ǁϯ ϰ͕ϱͿ Ɛϭ ŵϮ
ǁϰ ϱ͕ϳͿ ƐϮ ŵϮ͕ŵϯ͕�ŵϰ
ǁϱ ϳ͕ϵͿ ƐϮ ŵϰ
ǁϲ ϵ͕ϭϬͿ Ɛϯ ŵϱ

߬߬Ɛ ^
Ϭ͕ϱͿ Ɛϭ
ϱ͕ϵͿ ƐϮ
ϵ͕ϭϬͿ Ɛϯ

߬ƚс߬Ɛ߬߬ځŵ ^ D
Ϭ͕ϰͿ Ɛϭ ŵϭ
Ϯ͕ϱͿ Ɛϭ ŵϮ
ϱ͕ϳͿ ƐϮ ŵϮ
ϱ͕ϳͿ ƐϮ ŵϯ
ϱ͕ϵͿ ƐϮ ŵϰ
ϵ͕ϭϬͿ Ɛϯ ŵϱ

^

D

dŝŵĞ�:ŽŝŶ dŝŵĞ�tĂƌƉڇୗൈ
௧

ୗൈ

ڇ

ϱ͕ϳͿ�
ŵϮ͕�ŵϯ͕�ŵϰ

ŵϮ

ϳ͕ϵͿ�
ŵϰ

Ϯ͕ϰͿ�
ŵϭ͕�ŵϮ

Ϭ͕ϮͿ�
ŵϭ

ŵϭ

ŵϮ

ŵϰ
ŵϯ

Ϭ ϭϬϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ

ŵϱ

ƐϮ ƐϯƐϭ

ŵϱ

D

^

ୗൈ

ڇ

ϰ͕ϱͿ� ϵ͕ϭϬͿ

Figure 3: Time-warp operating on the partitioned states and
input messages for an active vertex.

states, and duplicate a message to multiple groups that are
each a partitioned vertex state. Each partitioned state and its
grouped messages forms a single triple in the output from
warp, and causes a single invocation to compute for that active
vertex interval with these as input parameters.

This ensures two things: (1) the user’s compute logic can
leverage this exact alignment between the message intervals
and the partitioned state in its invocation, and (2) the compute
itself is called as few a times as possible, to avoid redundant
computation and hence improve performance.

Similarly, before the scatter step for an active vertex, the
partitioned updated states from the compute step (outer set)
is warped with the temporal out-edges for that vertex (outer
set) so that each edge is invoked for a sub-interval which has
one (re)partitioned state-change that fully overlaps with that
interval and also with the edge’s lifespan. This too guarantees
that the scatter for an edge sub-interval receives a state update
applicable for that whole interval, and calls to scatter (and
hence, message generation) is minimized.

Intuitively, longer the intervals of items in the inner and
outer sets and greater their overlap, fewer the tuples in the
output set and lesser the calls to the user logic.
Detailed Warp Example. Fig. 3 illustrates warp for the 3
partitioned states S of an active vertex that receives 5 messages
M . A time-join ("̃#S×M ) operation [25] over these sets finds
the intersections between the intervals of a state and a message.
E.g., m2 with an interval of [2, 7) overlaps with the intervals
of s1 and s2, and results in 〈[2, 5), s1,m2〉 and 〈[5, 7), s2,m2〉.
Warp is a form of self-join over the time-join, with temporal
semantics that detect the boundaries of the intersections in
these time-joins (e.g., 0, 2, 4, 5, 7, 9, 10). For intervals formed
from adjacent pairs of boundaries (e.g., [0, 2), [2, 4)), it groups
messages in that interval with the state of the vertex (e.g.,
〈[0, 2), s1,m1〉, 〈[2, 4), s1, {m1,m2}〉). The output tuples are
temporally partitioned. Each tuple forms a call to compute,
with the time-aligned state and the message group passed to
it, thus simplifying the user logic. The warp of the updated
states after compute with the out-edges is similar, and triggers
the execution of scatter. In practice, a time-join suffices before
scatter if the edges’ properties are time-invariant. !

Formally, time-warp ( "#S×M ) operates on two sets S (outer
set) and M (inner set) both having 2-tuples with a time-interval
and a value. The outer set must be temporally partitioned. The
time-join ("̃#S×M ) operator [25] on the two sets is defined as:

S = {〈τs, s〉}
M = {〈τm,m〉}

����



"̃#t
S×M = {〈τt, st,mt〉 | 〈τs, st〉 ∈ S ∧ 〈τm,mt〉 ∈ M ∧

τs ' τm ∧ τt = τs ∩ τm}
It is a form of natural join over the intervals that identifies
sub-intervals of the inner set which are present in the outer,
and returns triples in the output set which have the common
sub-intervals from both sets and their associated values. Using
this, we propose and define the time-warp operator as:

"#S×M = {〈τpq, sr,Mr〉 |(
∀ p ∈ "̃#p

S×M , q ∈ "̃#q
S×M | sp = sq,

τpq = [ts, te) | ts ∈ {tps , tpe} ∧ te ∈ {tqs, tqe}
)
∧

(
∀ r ∈ "̃#r

S×M | sr = sp = sq,

(τpq , 'τr ∨ τpq & τr) ∧
τpq & τr =⇒ mr ∈ Mr

)
∧

Mr ,= ∅}
The start and end times of each sub-interval in the time-join
forms the time-point boundaries at which the tuples from the
two sets temporally overlap. The candidate time-intervals (τpq)
for the warp are formed from the cross-product of each pair of
boundary points of an interval, {tps , tpe}× {tqs, tqe}, for a given
common value sp = sq from the outer set S. Implicitly, only
valid intervals are considered, i.e., the start time-point of the
interval must be smaller than the end time-point.

Each candidate interval must either be fully contained within
or fully disjoint with every interval τr of the time-join which
has the same value as in the outer set. This ensures that the
warp’s interval does not cross a boundary time-point but rather
is exactly aligned with them. For each candidate interval that
is contained within a time-join interval, we group the values
mr from the inner set into the output Mr; we only include
those output triples with a non-empty set of inner values.

The warp operator guarantees the following properties:
1) Valid Inclusion. Every value-pair from across the two

sets, which both exist at an overlapping time-point, is
included for that time-point in an output triple. Formally,
for all tuples 〈τj , sj〉 ∈ S and 〈τk,mk〉 ∈ M , if τj ' τk,
then for all time-points t ∈ τj ∩ τk, there exists an output
tuple 〈τ, sj ,M〉 ∈ "#S×M such that t ∈ τ and mk ∈ M.

2) No Invalid Inclusions. No value from the two sets
are included in the output for a time-point unless they
both respectively exist in their sets for that time-point.
Formally, for any output tuple 〈τ, sj ,M〉 ∈ "#S×M , there
must exist tuples 〈τj , sj〉 ∈ S and 〈τk,mk〉 ∈ M such
that mk ∈ M, τ & τj and τ & τk.

3) No Duplication. A value at a time-point from the outer
set appears in no more than one output triple for that time-
point. Formally, there are no two output tuples 〈τj , sj ,
Mj〉, 〈τk, sk,Mk〉 ∈ "#S×M such that τj'τk and sj = sk.

4) Maximal. The number of output triples are temporally
grouped into as few as possible. Formally, there are no
two output tuples 〈τj , sj , Mj〉, 〈τk, sk,Mk〉 ∈ "#S×M

with sj = sk, Mj = Mk, and either overlapping intervals
τj ' τk or adjacent intervals τj ( τk.

Here, # 1–3 ensure correctness of the grouping, while # 4
limits invocation of the user logic to the minimally possible.

Temporal SSSP Example. Continuing the earlier example,
warp automatically enforces temporal constraints in the calls
to compute and scatter. Before the compute step, warp ensures
that the update messages are aligned and grouped with the
(re)partitioned vertex states. So compute can rely on the costs
in the messages being applicable to the entire sub-interval the
logic is called for, and can simply compare the state’s cost
with the message’s cost (lines 9–11 of Alg. 1).

E.g., when superstep 3 starts in Fig. 2, E calls warp
on its prior state 〈[0,∞),∞〉, and the messages 〈[9,∞), 5〉
from B and 〈[6,∞), 7〉 from C. Warp returns the tuples
〈[6, 9),∞, {7}〉 and 〈[9,∞),∞, {5, 7}〉 that each call com-
pute. Compute uses a simple min logic to change the travel
cost (state) to 7 for the interval [6, 9), and to 5 for [9,∞). We
also show the pre-compute warp in superstep 2 for B and C.

So the user logic avoids comparing the temporal bounds
of each message with each state, and explicitly repartitioning
the state before updating its cost. This makes the logic near-
identical to the non-temporal VCM algorithm. Also, the maxi-
mal property of warp ensures that compute is called only once
for all messages that temporally intersect with a partitioned
state, for that interval. This avoids duplication of calls. !

V. TEMPORAL GRAPH ALGORITHMS

Programming primitives like ICM help rapidly design dif-
ferent temporal graph algorithms from existing ones. Di-
verse TD path algorithms, such as Earliest Arrival Time
(EAT) [6], Fastest Arrival Time (FAST) [6], Latest Departure
time (LD) [6], Reachability (RH) [21] and Time-Minimum
Spanning Tree (TMST) [9], can be solved with minimal
changes to the temporal SSSP algorithm we introduced earlier.

To find the TMST from a given source, we add the parent
vertex ID to the state and the message value (lines 12 and
17) in Alg. 1, in addition to replacing travel cost with arrival
time, to rebuild the tree [9]. Just replacing the travel cost in
the message with the vertex departure time instead (line 15)
computes EAT from a single source to all destinations. Here,
we are only interested in the earliest time at which we can
reach a vertex, and not in subsequent intervals of arrival.
For RH, we replace the travel-cost in the message with a
flag to help test if a vertex-pair is reachable. The FASTest
path reduces the vertex waiting time and the travel time. Its
message will include the time at which the journey started at
the source for each path, and the state maintains the arrival
time at a vertex interval. Compute uses this to minimize the
travel duration, and propagates it through scatter. LD lets one
depart late and reach within a bound. Unlike SSSP, it reverse-
traverses from sink to source, in space and time, by setting its
message interval to [−∞, t.end−travelT ime). Warp ensures
that temporal bounds are not violated.

We also design two TD clustering algorithms: Local Clus-
tering Coefficient (LCC) [1] and Triangle Counting (TC) [20].
In LCC, each interval vertex quantifies how close its neighbors
are to forming a clique. Each vertex messages its neighbors,
which then message their neighbors to check the ones adjacent
to the initial vertex. This edge-count is sent back to the initial

����



vertex to compute its LCC. In TC, each vertex messages its
two-hop neighbors to see if they are adjacent to the initial
vertex. Neighbors for LCC and TC have to be time-respecting.

Besides these, we also formulate ICM variants for 4 TI al-
gorithms: BFS [5], WCC [16], Strongly Connected Component
(SCC) [16] and PageRank (PR) [5]. The VCM logic for these
algorithms can be reused for compute since ICM by default
assigns appropriate intervals to the states and messages.

The ability to design a variety of TI and TD algorithms at-
tests to the expressivity offered by the unified ICM primitives.

VI. THE GRAPHITE PLATFORM

GRAPHITE 3 is our implementation of the interval-compute
model, built as a layer on top of Apache Giraph, a popular
Java-based open-source distributed graph processing platform
that offers VCM primitives. Users provide their ICM compute
and scatter logic to GRAPHITE in Java. Our runtime logic,
such as warp, invocation of the interval-centric user logic, and
message handling, are part of the vertex-centric compute
method exposed by Giraph. We also leverage its Master-
Compute pattern for coordination.
Time Warp. We implement warp using a merge-sort ag-
gregation algorithm [26]. It incrementally computes a larger
aggregate by merging two smaller aggregates, with the fi-
nal aggregate at the root. For m input messages, its time-
complexity is O(m logm) and space-complexity is O(m).
Typically, m = O(d · t) where d is the in-degree and t is the
lifespan of the vertex. For algorithms like TC, the size of each
message can itself be d, increasing the space complexity.
Interval Messages. Messages in GRAPHITE includes an inter-
val, with start and end time-points. Given the billions of mes-
sages transmitted for large graphs, this affects network costs.
Since intervals may have a wide-range of values depending
on the temporal graph, we use variable byte-length numbers
to represent them, and observe that the overall message sizes
drop by 59–78%. Also, for unit-length messages, and those
that span till ∞, we pass just the start time point and a flag.
This saves an 8-byte long for the end time point.
Inline Warp Combiner. We allow users to specify warp com-
biners that execute as part of the warp step before compute,
and applies the combiner logic to the grouped and partitioned
messages it generates for each interval. This limits the mes-
sages to one per partitioned state when calling compute, and
can avoid a linear scan through the input messages. This can
often be coupled with a receiver-side message combiner that
is applied before warp.
Warp Suppression. Interval-centric computing works best
when the intervals of entities are long, with large overlap
across them. If the lifespan of vertices, edges and properties
are small, there is no shared compute and messaging to exploit.
Yet, the platform overheads for ICM will apply. Since warp
has the most overhead, we selectively disable the warp step if
more than a certain fraction of input messages to a vertex have
unit lifespans. This avoids the warp costs and degenerates to a

3Available online at https://github.com/dream-lab/graphite

Table 1: Dataset Characteristics

|V| |E| |V| |E| |V| |E| �|V| �|E| V E Prop.
GPlus1 4 17M 225M 28.9M 462M 60M 493M 60M 462M 2.6 1 1
USRN2,3 96 24M 58M 24M 58M 1.2B 4.1B 24M 58M 96 96 4.82
Reddit4 121 280K 24M 9.1M 523M 60.4M 717M 64.6M 662M 6.6 1.22 1.12
MAG5 219 116M 1B 116M 1B 2.6B 11.6B 3.4B 13.1B 20.9 15.8 5.26
Twitter6 30 43.5M 2.1B 43.9M 2.1B 519M 26.3B 1.3B 60.1B 29.5 28.4 14.8
WebUK7 12 110M 3.9B 131M 5.5B 1.1B 34B 1.3B 45.3B 9.97 9.4 4.7
LDBC10 128 102M 1B 118M 1.4B -- -- -- -- 84 78 12.8

Graph
#Snap 
shots

Average LifespanLargest Snap Interval Transf. Multi-Snap.

1 http://home.engineering.iastate.edu/˜neilgong/gplus.html
2 http://users.diag.uniroma1.it/challenge9 3http://www.trafficengland.com
4 http://cs.cornell.edu/ jhessel/projectPages/redditHRC.html
5 www.openacademic.ai/oag 6 twitter.mpi-sws.org 7 law.di.unimi.it/datasets.php

time-point centric execution model. While there are more calls
to compute, this outstrips the cost of calling warp without its
associated benefits. The correctness is not affected.

VII. EXPERIMENTAL EVALUATION

We offer a detailed comparative evaluation of the intrinsic
benefits of the ICM model, and certain engineering optimiza-
tions of GRAPHITE. No single prior study has examined these
number and variety of temporal graphs and algorithms. For
brevity, more details are given in our technical report [27].

A. Setup
1) TI and TD Algorithms: We implement 4 TI algorithms –

BFS [5], WCC [16], SCC [16] and PR, and 8 TD algorithms
SSSP [6], EAT [6], FAST [6], LD [6], TMST [9], RH [21],
LCC [1] and TC [20] discussed earlier. The former do not
use any properties, while the TD ones use edge properties.

2) Datasets: We run experiments for a diverse set of 6
real-world graphs (Table 1) to rigorously study the impact of
their characteristics on the performance of the algorithms for
GRAPHITE and the baselines. These vary in the size, per snap-
shot and cumulatively (Small: GPlus, USRN, Reddit; Large:
MAG, Twitter, WebUK); lifetime of the temporal graph and
entities (Short: GPlus; Long: MAG, Twitter; Mixed: Reddit,
USRN, WebUK); diameter (Long: USRN; Short: rest); and
degree distribution/domain (Planar/Road: USRN; Powerlaw/-
Social: rest). One edge property is present and used by the
TD algorithms. None of the algorithms use vertex properties
and is hence omitted. All graphs are based on real topologies.
We introduce structure variations for Twitter using Facebook’s
LinkBench distribution 4, but the dynamism is real for the
others. We use a distribution from a UK road traffic dataset
for the properties of USRN and use the LDBC generator for
Twitter 5, but the property variations are native for the rest.

3) Comparative Platforms: We compare ICM against four
contemporary baseline approaches that we implemented over
Apache Giraph. This ensures that the primitives are the key
distinction and not the programming language or engine.

The Multi snapshot baseline (MSB) is used for TI algo-
rithms. It loads and executes on each snapshot independently,
using a VCM logic [2], [7]. We implement a variant (clone) of
Chronos [4] which we call Chlonos (CHL) that enhances MSB

4https://github.com/facebookarchive/linkbench
5http://ldbcouncil.org

����



by sharing messages that span multiple adjacent snapshots. It
loads a batch of snapshots into an in-memory layout that is
vectorized into a single structure. Scatter identifies duplicate
messages pushed by the compute to adjacent time-points of a
sink vertex, and replaces them with one message for the whole
interval, saving network time and memory. But, the compute
call and state is separate for vertices in each snapshot. Chlonos
can operate on incremental batches of snapshots, and each
batch fits as many as possible in the distributed memory to
run the algorithms. It is limited to expressing TI algorithms.

The transformed graph baseline (TGB) [6] converts the
snapshots into transformed graph where interval vertices are
unrolled into vertex replicas, one for the number of incoming
and outgoing edges at distinct time-points, and each valid for
a single time-point. This transformation is distinct for each
algorithm. Edge-weights capture algorithm-specific properties,
such as travel cost. Besides user messages and compute calls
as part of VCM, shared states between different replicas are
exchanged using special messages and applied using compute
logic calls. We evaluate TGB only for TD algorithms. While
it is possible to use it for TI algorithms, it is much worse than
the other two baselines in performance and memory use. E.g.,
when using TGB for TI algorithms, GPlus was 7–16% slower
that MSB, while it ran out of memory for MAG.

GoFFish-TS (GOF) [12] models a temporal graph as a se-
quence of snapshots. It allows messaging to adjacent snapshots
and stateful execution of logic on vertices in each snapshot.
An outer loop over the snapshots delivers temporal messages,
and an inner loop of supersteps operates on one snapshot
using VCM. Our implementation loads stateful snapshots from
disk and processes them sequentially. Temporal messages and
vertex states from prior snapshots are passed on disk. We limit
GoFFish to TD algorithms as it degenerates to MSB for TI.

While we have attempted other platforms like GraphX [28]
and Tink [11] their performance was much worse than ICM
or the baselines [27]. E.g., for USRN, Tink took 4.2 × longer
compared to TGB and 21.5 × longer than GRAPHITE for
FAST, while it ran out of memory for Twitter. We have also
evaluated SAMS [2] for TI algorithms. But it is written in C++
and for a single machine, and so not comparable directly. It
performs 1.6–4.7× faster than our GRAPHITE setup, largely
due to C++, but runs out of memory for WebUK. Hence, we
exclude these systems from further evaluation.

4) System Setup and Metrics: We run the experiments on
a 10-node commodity cluster. Each node has one 8-core Intel
Xeon E5-2620 v4 CPU @ 2.1 GHz, 64 GB of RAM, 2 TB
of HDD, and 1 Gigabit Ethernet. Each node runs CentOS 7.5
with Java 8, Apache Hadoop 3.1.1 and Apache Giraph 1.3,
and is configured with 1 Giraph worker JVM with 14 threads
and 60 GB heap space. Except for weak scaling, all other
experiments use 8 nodes. Algorithms are run from a cold
cache state. Giraph partitions graphs using its hash partitioner,
and we disable its check-pointing and out-of-core computation.
Graphs are loaded from HDFS.

We report makespan as the wall-clock time from the first
user superstep, till the end of the last user superstep. This

Table 2: Ratio of the makespan of baseline platforms over
GRAPHITE, averaged for TI and TD algorithms. 1× means
same performance and > 1× means we are better. Italics in-
dicate that some algorithms DNF for that graph and platform.

GPlus Reddit USRN Twitter MAG WebUK

MSB 0.95 1.14 0.97 24.79 12.99 5.80
Chlonos 0.96 1.08 0.98 13.29 10.89 6.27
TGB 0.95 1.13 2.32 19.90 DNL DNL

GoFFish 0.96 1.05 6.49 6.75 4.60 3.71

T
I 
A

lg
T

D
 A

lg

includes the cumulative compute+ time, which is the time for
the compute (and scatter) calls overlapping with the messaging
and barrier synchronization, and the exclusive messaging time
after compute is done and only messages are being transmitted
in a superstep. For fairness, graph loading time is reported
separately. We also report the total number of calls to the
user’s compute logic and the messages sent.

B. Analysis
Table 2 summarizes the average speedup (n×) GRAPHITE

achieves across TI and TD algorithms, relative to other plat-
forms for different graphs. DNL and DNF indicate that a
platform Did Not Load the graph, or Finish the computation
due to memory overflow. Fig. 5 plots the makespan for each
algorithm (left Y axis) running on ICM and the baselines for
the different graphs, along with the number of compute calls
and messages sent (right Y axis). The makespan is further split
into the total time spent on the compute calls interleaved with
messaging (compute+) and for the exclusive messaging time
after all compute calls are done in a superstep. If substantial,
the total time spent for the barrier synchronization between
supersteps or JVM garbage collection (GC) is indicated sepa-
rately from the compute+ time they are usually part of. The TD
algorithms run on ICM (indigo bar color), Chlonos (crimson)
and MSB (magenta), while the TI algorithms run on ICM
(indigo), GoFFish (gold) and TGB (teal); EAT and FAST are
omitted in Fig. 5 for brevity. They perform similar to SSSP.

As Table 2 shows, GRAPHITE substantially outperforms all
platforms for most graphs by 2.32–24.79×, and is comparable
even for graphs that form the worst case for it. These are
based on the inherent characteristics of the ICM primitives
rather than engineering artifacts. We also weakly scale. These
outcomes are discussed below.

1) All platforms have conceptually equivalent outcomes:
As expected, all platforms produce identical results for all
the algorithms and graphs. Further, the programming models
produce conceptually equivalent execution behavior as well,
but with different performance trade-offs. This is apparent
when we examine GPlus (Fig. 5, (a)) which has unit-length
edge intervals – all platforms degenerate to operating on
each snapshot independently as edges do not span across.
Here, all platforms have an identical count of compute calls
and messages for an algorithm on a graph. Also, for each
algorithm on a graph, MSB and Chlonos have the same
number of compute calls; ICM and Chlonos have the same
number of messages if the former can fit all snapshots of

����



(a) Compute Calls v. Compute+ Time (b) Messages v. Messaging Time

Figure 4: Log-Log Scatter plot of count of compute calls and
messages, and their time contribution to the makespan.

the graph in a single batch (GPlus, Reddit, USRN); ICM and
GoFFish have identical number of compute calls if properties
change with every snapshot; and TGB and GoFFish have
identical number of messages and compute calls, if the replica
vertex state transfer messages and calls for TGB are ignored.

Compute calls and message counts are intrinsic to the
programming model, as opposed to execution times that may
depend on the platform and system at runtime. Matching these
across billions of calls and messages helps assert that we are
comparing the primitives and not just the platforms.

2) ICM primitives cause better GRAPHITE performance:
ICM reduces the count of compute calls and messages sent
for different algorithms and graphs, as we show later. These
intrinsic improvements due to the primitives leads to better
performance by GRAPHITE. All platforms are implemented
using Giraph. Since the time spent in the compute calls and
messaging form the bulk of the makespan for all platforms,
we correlate these counts against the compute+ and messaging
times using the scatter-plot in Fig. 4. There are 206 data
points in each plot. We see a high correlation for both these
factors, with R2 = 0.80 for the compute+ and R2 = 0.95 for
messaging – the former is smaller since compute+ includes
some interleaved messaging as well. This establishes that the
performance of the platforms are consistent with the behavior
of their primitives, and benefits seen for GRAPHITE are due
to ICM and not better engineering.

3) ICM out-performs for graphs with longer lifespans:
The benefits of ICM come from sharing compute and messages
across multiple time-points. This is limited by the lifespan of
the graph entities, as only temporally contiguous vertices can
share compute calls with partitioned states, and neighboring
vertices can share messages along their edge lifespans. The
lifespan for the interval graph 3 interval vertex 3 adjacent
edges 3 edge properties. So the benefits of ICM are con-
strained by the smallest of these. Our TI algorithms do not
use edge properties and are affected by the edge lifespan. TD
algorithms use edge properties and are limited by its lifespan.

Twitter and MAG have the longest average lifespans (Ta-
ble 1). For Twitter, the edge lifespan is 28.4 and almost spans
the entire graph lifespan. GRAPHITE is 24.1–26.3× faster for
TI algorithms than MSB. This is equally due to a drop in
the number of compute calls by ≈ 27× and in messages by
≈ 28×, compared to MSB. Chlonos calls compute on each

time-point like MSB, but can share messages across intervals
within a single batch. Due to the large size of Twitter, Chlonos
can fit only 6 snapshots in memory and creates 5 batches.
GRAPHITE takes 93% less time than Chlonos – largely due
to 27× fewer compute calls that reduces makespan by 79%.
While Chlonos sends fewer messages than MSB, it still sends
≈ 4.5× more messages than ICM due to the 5 batches.

Twitter’s average edge property lifespan is 14.8 – half of its
edge lifespan. However, GRAPHITE is 19.1–20.3× faster than
TGB, with a 95% smaller makespan, for the TD algorithms.
Besides an 8× drop in messages and 10.5× drop in compute
calls, there are two other factors at play. One, despite hash-
based vertex partitioning, 70% of the messages are for 4 of
the 8 graph partitions. This network bottleneck causes a higher
messaging time for TGB. Two, the larger size of the Twitter
transformed graph causes memory pressure and triggers the
JVM GC, causing GRAPHITE to have a 40% lower makespan.
This is discussed in Sec. VII-B4. GRAPHITE is 2.98–8.2×
faster than GoFFish, mainly due to an 8× drop in the message
count, and partly due to a 6× drop in compute calls. Like TGB,
GoFFish does not share compute or messages across intervals.

Also, ICM is faster for TI (≈ 12×) and TD (≈ 4.6×)
algorithms for MAG due to fewer compute calls and mes-
sages, which correlate with its edge (≈ 15.8×) and property
(≈ 5.3×) lifespans.

4) ICM out-performs for large graphs: ICM offers sev-
eral benefits for temporal graphs with large sizes and long
lifespans, but due to complementary reasons from above. Its
interval graph model that is loaded and retained in distributed
memory is more compact than the transformed graph of TGB
(Table 1, Fig. 6(a)). E.g., the transformed graph for MAG and
WebUK cannot load into 480 GB of distributed memory. They
need 604 GB and 684 GB of memory just to load the graph,
compared to just 130 GB and 183 GB for our interval graph.
Besides memory pressure, this also increases the number of
messages and compute calls performed in TGB to share state
between replica vertices, e.g., by 50% on Twitter. While these
are more light-weight than the application compute calls and
messages, they do pose a noticeable overhead.

Large graphs use more memory and create billions of
message objects. This triggers the JVM’s GC; we use the G1
GC that is efficient for large heap sizes. E.g., for Twitter, TGB
calls GC 33 times for SSSP and this takes ≈ 32% of its total
makespan, compared to 6 calls to the GC for ICM that account
for 5% of its makespan. For WebUK, calls to GC make up
≈ 20% of ICM’s makespan for TD algorithms, limiting its
improvements over other platforms. GC calls are fewer for
GoFFish and MSB that operate on just one snapshot at a time,
and it depends on the batch size for Chlonos. E.g., Chlonos
is slower than MSB only for WebUK due to GC overheads
on batches of 2 snapshots, which outstrips its message sharing
benefits. However, often the compute times dominate GC time.
E.g., for MAG, ICM spends 27–163 seconds on GC for TI
algorithms, which is more than Twitter’s 11–42 seconds, but
forms just 3–6% of the overall makespan.

While MSB, Chlonos and GoFFish relieve memory pressure

����



Figure 5: Makespan and the count of compute calls and messages sent for the 4 TI and 6 TD algorithms; EAT/FAST are
omitted for brevity. Barrier & GC time splits for makespan are shown only if large. Note the different scaling on the Y axis.

Figure 6: GRAPHITE optimizations and memory footprint.

by operating on one or a batch of snapshots, their snapshot data
size on disk is larger than ICM. Fig. 6(a) shows the in-memory
size of the interval/transformed graph (ICM, TGB) and largest
snapshot/batch (MSB, Chlonos, TGB) on loading. TGB has
the largest size followed by Chlonos, ICM, GoFFish and
MSB. While these result in disk and network I/O load times
from HDFS for ICM and TGB, these times accumulate across
different snapshots/batches for MSB, Chlonos and GoFFish.
E.g., for MAG, these cause an additional 24 secs (GRAPHITE),
2682 secs (MSB), 138 secs (Chlonos) and 2931 secs (GoFF-
ish); TGB did not finish, but took 103 secs on a larger cluster.
These times are substantial, but not included when we report
the makespan out of fairness to other platforms.

Lastly, using warp combiner reduces a pass by the warp and
another by the compute on the input messages into a single
pass that does both. All our algorithms except LCC and TC
are commutative and associative, and define combiners. This
benefits large graphs with many messages received per interval
vertex. Fig. 6(b) shows the benefits of using the combiner in
GRAPHITE for MAG, relative to disabling it. The compute
time drops by 17–25% across all algorithms, which lowers
makespan by 1.2–1.5×. A 16–27% drop in compute time is
seen for WebUK. This feature is enabled for all experiments.

5) ICM limits downsides, and is competitive even for
short-lifespan graphs: There is limited or no benefit from
ICM for graphs with unit or small lifespan of entities,

like GPlus and Reddit, since we cannot share compute or
messaging. However, ICM and warp introduce overheads to
the GRAPHITE platform relative to the stock Giraph used
by the baselines. Our automatic warp suppression mitigates
this. Here, messages do not pass through the warp if the
number of unit-length messages to an interval-vertex is above
a threshold (default 70%) in a superstep. Its benefits are
evident in Fig. 6(c) for GPlus, which has unit-length edges
and is the worst-case for ICM. The makespan reduces by 25–
40% with this feature, and we are only marginally slower by
≈ 7% (excluding load times) compared to the other baselines
(Fig. 5(a)). This is both due to avoiding warp and reduced
messaging. These benefits are also seen for Reddit, where 96%
of edges have unit lifespans and yet GRAPHITE manages to
out-perform the other platforms by ≈ 14%.

Another optimization for short-lifespan graphs replaces the
pair of start and end time-points for a unit-length interval with
just one value. This saves 8 bytes per message, which adds
up for ≈ 5B peak messages sent for GPlus and Reddit.

6) ICM benefits graphs with large diameters, and is com-
petitive for non-temporal structures: Graphs like USRN have
no structural changes, and only properties change. As a manual
optimization, developers may instruct MSB and Chlonos to
just operate on a single snapshot and reuse its results for the
TI algorithms. ICM operates on the interval graph, with vertex
and edge lifespans matching the graph’s lifespan. It naturally
sets the message intervals to match this, and automatically
garners similar benefits for the TI algorithms. So GRAPHITE’s
makespan is comparable to these platforms (despite omitting
load times). MSB and Chlonos cannot benefit even if there
is a small change in the topology, such as for Reddit. TD
algorithms use edge properties, and do not benefit from the
static topology of USRN as its edge properties vary.

ICM offers some benefits due to the large diameter of 6262
for USRN. The superstep count is proportional to the diameter
for traversal algorithms, while PR, TC, and LCC have fixed
superstep counts of 10, 3, and 4, respectively. The total barrier

����



Figure 7: Weak Scaling of GRAPHITE for all algorithms on
synthetic graphs, using 1, 2, 4, 8 and 10 machines (‘xM’ on X
axis). Each machine holds ≈ 10M vertices, ≈ 100M edges.

synchronization time is separated out for USRN (Fig. 5(c)).
While Giraph spends ≈ 40ms on a barrier, this adds up to
dominate the makespan for all platforms. This is worse for
TD algorithms as they multiply over snapshots for GoFFish.
The diameter of the transformed graph is also ≥ the interval
graph. TGB takes slightly more barrier time than ICM.

7) ICM exhibits weak scaling: Weak scaling is a common
scalability metric where, ideally, the makespan stays constant
as the input and the resources increase proportionally. We
perform weak scaling experiments for GRAPHITE by increas-
ing the interval graph size and the number of machines. We
generate a synthetic graph using LDBC’s Facebook degree dis-
tribution 5 , and perturb its structure over 128 time-points using
Facebook’s LinkBench distributions 4. The largest snapshot
for a graph has m× 10M vertices and m× 100M edges, for
m = {1, 2, 4, 8, 10} machines (Table 1). In Fig. 7, GRAPHITE
exhibits near ideal weak scaling, with the makespan staying
almost constant as the machine count increases, with a fixed
load per machine. The scaling efficiency is 95–106%, and
indicates that we can scale well to even larger graphs.

8) ICM algorithms are concise: The lines of user logic
code (LoC) for GRAPHITE is 15–47% fewer compared to
Chlonos, 19–44% fewer than GoFFish, and 46–152% fewer
than TGB. Our LoC is marginally higher than MSB, by 3–19%
(exactly 3 lines). These 3 additional lines in TI algorithms are
ICM API calls. The 4 TI algorithms take 19–114 LoC using
ICM, while the 8 TD algorithms take 27–80 LoC.

VIII. CONCLUSION

In this paper we propose an Interval-centric Computing
Model (ICM), a novel and unifying abstraction for designing
distributed TI and TD algorithms over temporal graphs. Our
warp operator enhances usability and improves performance
by sharing compute and messaging across intervals, where
possible. Our experiments extensively validate these intrinsic
performance and scalability benefits. Our ability to express 12
TD and TI algorithms attests to its intuitiveness. ICM plugs a
key gap in current literature for generic and scalable temporal
graphs primitives. In future, we plan to extend ICM to process
real-time temporal graphs of a streaming nature, offer query
capabilities over temporal property graphs and explore storage
and partitioning strategies.

ACKNOWLEDGMENT

We thank the reviewers of ICDE, and Prof. J. Haritsa, S.
Karthik, A. Sanghi, A. Khochare, Sheshadri K.R. and Shriram
R. from IISc for their constructive comments on this paper.

REFERENCES

[1] P. Holme and J. Saramäki, “Temporal networks,” Physics Report, vol.
519, no. 3, 2012.

[2] M. Then, T. Kersten, S. Günnemann, A. Kemper, and T. Neumann, “Au-
tomatic algorithm transformation for efficient multi-snapshot analytics
on temporal graphs,” PVLDB, vol. 10, no. 8, 2017.

[3] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass, “Query plans for
conventional and temporal queries involving duplicates and ordering,”
in IEEE ICDE, 2000.

[4] W. Han et al., “Chronos: a graph engine for temporal graph analysis,”
in ACM EuroSys, 2014.

[5] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in ACM SIGMOD, 2010.

[6] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems
in temporal graphs,” PVLDB, vol. 7, no. 9, 2014.

[7] V. Z. Moffitt and J. Stoyanovich, “Temporal graph algebra,” in Interna-
tional Symposium on Database Programming Languages (DBPL), 2017.

[8] J. Gao, P. K. Agarwal, and J. Yang, “Durable top-k queries on temporal
data,” PVLDB, vol. 11, no. 13, 2018.

[9] S. Huang, A. W.-C. Fu, and R. Liu, “Minimum spanning trees in
temporal graphs,” in ACM SIGMOD, 2015.

[10] Z. Cai, D. Logothetis, and G. Siganos, “Facilitating real-time graph
mining,” in Intl. Worksh. on Cloud Data Managem. (CloudDB), 2012.

[11] W. Lightenberg, Y. Pei, G. Fletcher, and M. Pechenizkiy, “Tink: A
temporal graph analytics library for apache flink,” in Companion Pro-
ceedings of the The Web Conference, 2018.

[12] Y. Simmhan, N. Choudhury, C. Wickramaarachchi, A. Kumbhare,
M. Frincu, C. Raghavendra, and V. Prasanna, “Distributed programming
over time-series graphs,” in IEEE IPDPS, 2015.

[13] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys (CSUR), vol. 48, no. 2, 2015.

[14] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” PVLDB, vol. 5, no. 8, 2012.

[15] S. Salihoglu and J. Widom, “Optimizing graph algorithms on pregel-like
systems,” PVLDB, vol. 7, no. 7, 2014.

[16] D. Yan et al., “Pregel algorithms for graph connectivity problems with
performance guarantees,” PVLDB, vol. 7, no. 14, 2014.

[17] A. G. Labouseur et al., “The G∗ graph database: efficiently managing
large distributed dynamic graphs,” Distributed and Parallel Databases,
vol. 33, no. 4, 2015.

[18] A. P. Iyer, Q. Pu, K. Patel, J. E. Gonzalez, and I. Stoica, “TEGRA: Effi-
cient ad-hoc analytics on time-evolving graphs,” UCBerkeley RISELab,
Tech. Rep., 2019.

[19] K. Kulkarni and J.-E. Michels, “Temporal features in SQL:2011,”
SIGMOD Record, vol. 41, no. 3, 2012.

[20] R. Kumar and T. Calders, “2SCENT: an efficient algorithm for enumer-
ating all simple temporal cycles,” PVLDB, vol. 11, no. 11, 2018.

[21] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-
based path queries in temporal graphs,” in IEEE ICDE, 2016.

[22] R. Angles et al., “G-CORE: A core for future graph query languages,”
in ACM SIGMOD, 2018.

[23] K. Semertzidis, E. Pitoura, and K. Lillis, “Timereach: Historical reach-
ability queries on evolving graphs,” in EDBT, 2015.

[24] J. F. Allen, “Maintaining knowledge about temporal intervals,” CACM,
vol. 26, no. 11, 1983.

[25] M. D. Soo, R. T. Snodgrass, and C. S. Jensen, “Efficient evaluation of
the valid-time natural join,” in IEEE ICDE, 1994.

[26] B. Moon, I. F. V. Lopez, and V. Immanuel, “Scalable algorithms for
large temporal aggregation,” in IEEE ICDE, 2000.

[27] S. Gandhi and Y. Simmhan, “Graphite: An interval-centric model for
distributed computing over temporal graphs,” Indian Institute of Science,
Tech. Rep., 2019, https://www.w3id.org/dream-lab/pubs/icm.pdf.

[28] J. E. Gonzalez et al., “GraphX: Graph processing in a distributed
dataflow framework,” in OSDI, 2014.

����


